

15456/10 AL/mvk 1
 DG H 2B EN

COUNCIL OF

THE EUROPEAN UNION

 Brussels, 17 November 2010

15456/10

COPEN 236

JURINFO 49

EJUSTICE 104

NOTE

from:

to:

General Secretariat of the Council

Delegations

Subject: ECRIS Technical Specifications - Technical Architecture

Delegations will find in the Annex the revised text of the ECRIS Technical Specifications -

Technical Architecture, as agreed on at the Working Party on Cooperation in Criminal matters

which met on 20 October 2010.

15456/10 AL/mvk 2
ANNEX DG H 2B EN

ANNEX

European Commission – DG Justice

iLICONN Consortium (Bilbomatica – Intrasoft – Unisys)

ECRIS TECHNICAL

Specifications

Technical Architecture

15456/10 AL/mvk 3
ANNEX DG H 2B EN

Document Information

AUTHOR iLICONN – Intrasoft International S.A.

OWNER European Commission – DG Justice

ISSUE DATE 22/10/2010

VERSION 1.0

APPROVAL STATUS Adopted

Authors

NAME ACRONYM ORGANISATION ROLE

Nicholas YIALELIS NYI iLICONN – Intrasoft International S.A.
Manager

Reviewer

Panos ATHANASIOU PAT iLICONN – Intrasoft International S.A. Main Author

Ludovic COLACINO
DIAS

LCO iLICONN – Intrasoft International S.A.
Contributor

Reviewer

Document History

VERSION DATE AUTHOR DESCRIPTION

0.1 23/09/2010 PAT First draft

0.2 24/09/2010 PAT Updates in chapters 6 and onwards, examples

0.3 26/09/2010 LCO Revision

0.4 12/10/2010 PAT
Update of all sections according to author’s position
on comments from Member States

0.5 14/10/2010 LCO Revision and finalisation of document

1.0 22/10/2010 LCO
Text of version 0.5, adopted in Council by COPEN
Working Party on 20-Oct-2010

15456/10 AL/mvk 4
ANNEX DG H 2B EN

TABLE OF CONTENTS

1 DOCUMENT..6

1.1 Purpose ..6

1.2 Scope ...6

1.3 References ...7

1.4 About this Document...9

1.4.1 Elaboration of this Document ..9

1.4.2 Understanding this Document..9

1.4.3 Providing Comments ...10

2 Introduction...12

3 Communication Architecture..13

3.1 Decentralised Architecture ..13

3.2 Protocols and Standards ..15

3.3 Communication Mode...19

3.3.1 Synchronous Technical Calls and Asynchronous Functional Responses..............19

3.3.2 Error Types and Error Handling ..21

3.3.3 Message Validity ...24

3.3.4 Connectivity...24

3.4 WSDL/XSD/XML design principles...25

3.4.1 XSD/XML naming convention based on ISO 11179..25

3.4.2 Using Object-Oriented Paradigms in XML ..28

3.4.3 Encapsulation ...29

3.4.4 Inheritance..30

3.4.5 Polymorphism ..32

3.4.6 Abstraction using “xsi:type” ..33

3.4.7 Messages and XML document content...40

3.4.8 Common reference tables ..42

3.4.9 Documentation ...43

15456/10 AL/mvk 5
ANNEX DG H 2B EN

4 Versioning...44

4.1 Concepts ..44

4.1.1 Introduction..44

4.1.2 Versioning concepts in XML schema design ...45

4.1.3 Versioning concepts in Web Services ..48

4.2 Versioning solution for ECRIS ...52

4.2.1 Versioning strategy ..52

4.2.2 Versioning strategy implementation on the Service Contract55

4.2.3 Tracking changes ...59

5 Binary Attachments ..60

5.1 Fingerprints (NIST files) ...60

5.2 Binary attachments limitations ..61

5.2.1 File types ..61

5.2.2 Message size ..61

5.3 Binary attachments implementation specification...62

5.4 Binary attachments exchange kinematics..63

6 Batch transmission of Messages ...68

7 Annex I – Overview of Member States Answers ...69

8 Annex II – DisCarded proposals...71

8.1 Communication Architecture ..71

8.2 WSDL/XSD/XML Design Principles..73

8.3 Versioning ...75

8.4 Binary Attachments ...77

8.5 Binary Attachments Exchange Kinematics ...79

8.6 Batch Processing of Message Exchanges..80

15456/10 AL/mvk 6
ANNEX DG H 2B EN

DOCUMENT

Purpose

This document is a formal product of the ECRIS Technical Specifications project for the European

Commission – DG Justice and produced by the iLICONN Consortium.

The main purpose of this document is to describe the general technical architecture and major

technical design choices upon which the detailed technical specifications of the ECRIS data

exchanges are built. It provides the principles, methods, techniques, protocols and standards to be

used for realising the ECRIS Technical Specifications.

This document assumes that the readers have a good and detailed knowledge and understanding of

the following elements:

§ ECRIS legal basis

§ The “ECRIS Technical Specifications – Inception Report” document

§ Web Services and in particular service contract design

§ XSD and XML concepts

Scope

This document provides all necessary background information so as to describe the decisions in

regards to the “Technical Architecture” themes. In particular, this document provides:

§ the general view of the technical ECRIS system architecture and communication
mechanisms

§ the detailed list of technologies, standards, formats and protocols to be used for the
computerised ECRIS communications

§ descriptions of the design choices and technical principles to be applied for error
handling, implementing transactional behaviour, designing the XSD schemas,
implementing the versioning of ECRIS

§ descriptions of the proposals that were considered but which have been discarded

This document does not provide any other information than what has been stated above, and in

particular it does not include:

§ Additional background material on the subjects discussed

§ Proposals for security-related matters and the technical solutions to these (please note that
such issues are being handled in a separate and specific document)

§ Functional or judicial considerations; indeed this document focuses on the technical
aspects of the ECRIS data exchanges rather than on the content of the messages

15456/10 AL/mvk 7
ANNEX DG H 2B EN

References

The following sources have been used as input for the elaboration of this “Technical Architecture”

document:

[1] ECRIS Legal Basis – Council Framework Decision 2009/315/JHA
Council of the European Union (2009), Council Framework Decision 2009/315/JHA of 26 February 2009 on the organisation and

content of the exchange of information extracted from the criminal record between Member States (OJ L 93/23 of 07.04.2009)

[2] ECRIS Legal Basis – Council Decision 2009/319/JHA
Council of the European Union (2009), Council Decision 2009/316/JHA of 6 April 2009 on the establishment of the European

Criminal Records Information System (ECRIS) in application of Article 11 of Framework Decision 2009/315/JHA (OJ L 93/33 of

07.04.09)

[3] Network of Judicial Registers (NJR) – Technical References – version 1.3a
(approved) of 13 March 2008

[4] Network of Judicial Registers (NJR) – Technical References – version 1.4 (draft) of
23 November 2009

[5] Network of Judicial Registers (NJR) – XML Listings – version 1.4 (final) of 01 July
2009

[6] NJR WSDL and XML Files v1.4.2 of 21 January 2009 (final)

“CommonTables_and_XML_rel1-4-2_20090121.zip” file containing:

− RegisterService-1.4.2.wsdl (version 1.4.2)

− common.xsd (version 1.4 of 18 December 2008)

− CommonTables-1.3.xsd (version 1.3)

− CommonTables-1.4.2.xml (version 1.4.2)

− error.xsd (version 1.4 of 02 November 2005)

− information.xsd (version 1.4 of 02 November 2005)

− notification.xsd (version 1.4 of 22 November 2005)

− receipt.xsd (version 1.4 of 02 November 2005)

− request.xsd (version 1.4 of 02 November 2005)

[7] NJR WSDL and XML Files v1.5 (draft)

− RegisterService-1.5.wsdl (draft version 1.5 of 11 August 2010)

− common.xsd (draft version 1.5 of 10 June 2010)

− CommonTables-1.5.xsd (draft version 1.5)

− CommonTables-1.5.xml (draft version 1.5.0)

15456/10 AL/mvk 8
ANNEX DG H 2B EN

− error.xsd (draft version 1.5 of 10 July 2010)

− information.xsd (draft version 1.5 of 10 July 2010)

− notification.xsd (draft version 1.5 of 10 July 2010)

− receipt.xsd (draft version 1.5 of 10 July 2010)

− request.xsd (draft version 1.5 of 10 July 2010)

[8] European Commission – DG Enterprise (2004): IDA Architecture Guidelines for
Trans-European Telematics Networks for Administrations, version 7.1 of 13
February 2004 (and annexes)

[9] ECRIS Technical Specifications - Inception Report v1.02 of 22 October 2010

[10] The replies from the following Member States to the “Inception Phase
Questionnaire” v0.05 (listed in alphabetical order):

Austria (AT), Belgium (BE), the Czech Republic (CZ), Estonia (EE), Finland

(FI), France (FR), Germany (DE), Hungary (HU), Lithuania (LT), Luxembourg

(LU), the Netherlands (NL), Poland (PL), Portugal (PT), Romania (RO), Slovakia

(SK), Slovenia (SI), Spain (ES), Sweden (SE), the United Kingdom (UK)

[11] “SOA Design Patterns”

Thomas Erl - Prentice Hall/PearsonPTR (ISBN: 0136135161)

[12] “Web Service Contract Design and Versioning for SOA”
Thomas Erl, Anish Karmarkar, Priscilla Walmsley, Hugo Haas, Umit Yalcinalp,
Canyang Kevin Liu, David Orchard, Andre Tost, James Pasley - Prentice
Hall/PearsonPTR
(ISBN: 013613517X)

[13] “Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions”
Gregor Hohpe, Bobby Wolf - Addison-Wesley Professional
(ISBN-13: 978-0321200686)

[14] “Creating flexible and extensible XML schemas”
Ayesha Malik, 01 Oct 2002
http://www.ibm.com/developerworks/library/x-flexschema/

[15] Guide to Versioning XML Languages using XML Schema 1.1
David Orchard (2006 W3C)
http://www.w3.org/TR/xmlschema-guide2versioning/

[16] ECRIS Technical Specifications - Technical Architecture Proposals v0.05 of 10
September 2010

[17] Comments on ECRIS Technical Architecture Proposals received from the following
Member States: BE, DE, EE, EL, ES, FR, LU, RO, SE, SK, UK

[18] ECRIS Technical Specifications - Expert Sub Group Meeting Minutes and
Conclusions of 22 September 2010

http://www.ibm.com/developerworks/library/x-flexschema/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-guide2versioning/

15456/10 AL/mvk 9
ANNEX DG H 2B EN

[19] ECRIS Technical Specifications – Glossary v1.0 of 05 October 2010

About this Document

Elaboration of this Document

This “Technical Architecture” document has been drafted by the iLICONN staff based on the

following input:

§ The documents listed in the references above

§ The answers provided by the following Member States’ central authorities to the concrete
technical proposals described in the “ECRIS Technical Architecture proposals” document
that has been sent out by iLICONN to all Member States’ contact points on the 13th of
September 2010 (listed in alphabetical order):

Belgium (BE), the Czech Republic (CZ), France (FR), Germany (DE), Greece (GR),

Luxembourg (LU), Romania (RO), Slovakia (SK), Spain (ES), Sweden (SE), the United

Kingdom (UK)

§ The discussions and conclusions that have been reached during the Expert Sub Group
Meeting on 22nd of September 2010 with the technical experts of the following Member
States: DE, EE, ES, LT, UK

§ The 70 comments issued by the Member States on the previous version of this document
by the 06th of October 2010.

Understanding this Document

This document comes with a “Glossary” document that provides definitions for the specific terms

that are used throughout the ECRIS Technical Specifications project.

By convention, all words marked in italic in this document can be looked up in the “Glossary”

document. The bold font is used for emphasising a specific term or part of a sentence. The

underlines mark the text that has been added or modified since the last version while the strike-

through marks the text that has been removed or replaced.

In case of doubts about the exact meaning of a term, please consult first the “Glossary”.

Should you still have any doubts about the meaning of a specific sentence or paragraph, please do

not hesitate to take direct contact with the following persons by telephone or via e-mail, at your best

convenience:

15456/10 AL/mvk 10
ANNEX DG H 2B EN

Organisation: European Commission – DG Justice – Criminal Law

Name: Jaime LOPEZ-LOOSVELT

E-mail: JUST-CRIMINAL-RECORD@ec.europa.eu

Telephone: +32 (0)2.298.41.54

Organisation: iLICONN Consortium – Intrasoft International S.A.

Name: Ludovic COLACINO DIAS

E-mail: ECRIS-Specs-PM.iLICONN@intrasoft-intl.com

Mobile: +32 (0)498.30.25.55

Providing Comments

As described in the “Inception Report” document, all major deliverables produced by the iLICONN

Consortium are undergoing a “Review Cycle” during which all EU Member States experts are

invited to provide comments.

Since the iLICONN staff needs to collect, compare and analyse the feedback from 27 Member

States on the same document – thus potentially a large number of comments – it uses a tool that

allows easily extracting the comments from MS Word documents.

Therefore, for commenting this document, please apply the following guidelines:

§ All comments are to be written in plain English. Comments provided in other languages
cannot, unfortunately, be taken into account.

§ The comments must be specific to and must relate to the text (sentence and/or paragraph)
being revised.

§ Please use simple wording and be as specific, concise and clear as possible in order to
avoid ambiguities.

§ When referring to specific terms, acronyms, abbreviations that are common in your daily
jargon but that are not defined in the Glossary document, please define them first.

§ Write your comments directly in this MS Word document, by proceeding as follows:

− First select a word, a part of a sentence or a paragraph (this can be done for example
by double-clicking on a word or by dragging your mouse over parts of the text while
keeping the left mouse-button pressed).

Attention:

mailto:JUST-CRIMINAL-RECORD@ec.europa.eu
mailto:ECRIS-Specs-PM.iLICONN@intrasoft-intl.com

15456/10 AL/mvk 11
ANNEX DG H 2B EN

Please note that a minimum of 4 characters must be selected in order for our

commenting tool to grab the comment. Furthermore, comments on diagrams and

embedded pictures are also not taken into account. In such cases, please select the

caption text underneath the diagram or image.

− Once a word, part of a sentence or paragraph has been selected, insert an MS Word
comment in which you can type your remarks.

An MS Word comment is typically displayed as a red balloon in the right margin of the

document and usually starts with the abbreviation of your name and the timestamp at

which the comment is being written. Depending on your version of MS Word, use the

following steps for inserting a comment:

MS Word 2007 and MS Word 2010:

1. Select the text you would like to comment upon

2. Open the Review ribbon, select New Comment in the Comments section

3. In the balloon that appears in the right margin, type your comment

4. Click anywhere in the document to continue editing the document

MS Word 2003:

1. Select the text you would like to comment upon

2. From the Insert menu, select Comment (or click on the New Comment
button on the Reviewing toolbar)

3. In the balloon that appears in the right margin, type your comment

4. Click anywhere in the document to continue editing the document

The text will have coloured lines surrounding it, and a dotted coloured line will connect

it to the comment. To delete a comment, simply right click on the balloon and select

Delete Comment.

§ Please do not use the MS Word “track changes” tool and do not write your comments as
plain text in the MS Word file.

§ In case that you want to provide general comments or remarks that are not specific to a
part of the text of this document, please provide them into a separate document and/or e-
mail.

15456/10 AL/mvk 12
ANNEX DG H 2B EN

In case that you need to translate this document to another language, and then translate back your

comments to English, please make sure that your comments are provided in the form described

above and that they have not been altered or moved to another section of the text during the

translation process.

Introduction

This document establishes the common principles, methods, techniques, standards and protocols to

be used for realising the ECRIS Detailed Technical Specifications and for implementing the ECRIS

software.

These have been conceived based on the preliminary analyses that were carried out during the

“Inception Phase” of the project, keeping in mind not only the ECRIS legal basis but also the replies

received from the Member States to the “Inception Phase Questionnaire” and to the "Technical

Architecture Proposals" documents. In addition, the concrete technical proposals were further

discussed in an Expert Sub Group Meeting on 22 September 2010 with technical experts of several

Member States so as to reach a sufficient level of maturity and cohesion.

The technical principles, standards and protocols described in this document are to be considered

final and binding for all software implementations of the ECRIS Technical Specifications –

implementations produced by the Member States and by the ECRIS Reference Implementation to be

provided by the European Commission.

Please note that, where necessary, practical examples are provided so as to illustrate the particulars

of a given approach. Deliberately, these examples are not necessarily using known ECRIS data

elements so as to keep the focus on the technical subject being discussed rather than on the

particulars of ECRIS. It is indeed the aim to present technical solutions that are sufficiently general

and flexible so as to be able to accommodate current but also future needs of ECRIS.

15456/10 AL/mvk 13
ANNEX DG H 2B EN

Communication Architecture

Decentralised Architecture

Given its nature, ECRIS falls under the category of Enterprise Integration projects. In this category

different architectural approaches exist, each with its own benefits and shortcomings. On a high

level, the approaches can be grouped in the following two:

§ Centralised communication (using patterns and technologies such as a central ESB)

§ Decentralised communication (Peer-to-Peer and similar approaches)

In accordance with the ECRIS legal basis and with the answers from the Member States to the

“Inception Phase Questionnaire”, only the decentralised communication approach is being

considered.

Even in a decentralised communication approach, it is possible to propose solutions that still partly

use centralised technical artefacts such as common tools (for example naming directories,

sequencers, validation tools, etc.) and specific mandatory or optional functions (such as logging,

monitoring, collection of statistical data, transliteration, translation, time synchronisation etc.)

In accordance with the ECRIS legal basis and with the answers from the Member States to the

“Inception Phase Questionnaire”, only a fully decentralised communication approach is considered

for implementing ECRIS. No centralised technical artefacts or functions are to be used.

Please note that in particular, as a consequence of the fully decentralised approach, time

synchronisation of the clocks of the computer servers (for example using NTP servers) falls under

the responsibility of each individual Member State. Moreover, it has to be noted that time

mismatches between the ECRIS servers can potentially affect the collection of statistics of the

message exchanges and create inconsistencies. In order to mitigate that risk, the descriptions of the

statistics procedures needs to foresee a percentage of tolerance for such borderline errors. This is

out of scope of this specific document and will be dealt with in the “Logging, Monitoring and

Statistics Analysis” document.

15456/10 AL/mvk 14
ANNEX DG H 2B EN

Fully Decentralised Communication Architecture

Based on the replies provided to the “Inception Phase Questionnaire”, the Member States being

clearly against using a centralised approach, full or partial, invoked mainly the following aspects to

be avoided:

§ Increased dependency to external structures

§ Increased complexity

§ Security concerns

§ Creation of a single point of failure

For the sake of completeness, it is to be noted that the centralised model is only endorsed by a few

Member States, raising the following benefits:

§ Easier troubleshooting in regards to connectivity issues

§ Common facilities and services that will be available for all Member States, thus
reducing the cost of implementation

§ Easier maintenance of common information artefacts

§ Easier collection of statistics

Overall, the approach is to keep the same connectivity model as in NJR. Concretely, this means that

sTESTA is used as the common communication medium between Member States, leaving the

particulars of how connectivity is achieved with sTESTA to each Member State to handle. Each

Member States’ ECRIS application dialogues with the ECRIS applications of all other Member

States, without intermediate software.

The following diagram provides an overview on how connectivity is achieved between Member

States using sTESTA. Please note that the local network topology and set-up of each Member State

is abstracted and represented as a single entity, further referred to as "Local Member State

Network", although in practice it is actually constituted of a chain of specific national and/or local

networks.

15456/10 AL/mvk 15
ANNEX DG H 2B EN

Local Member State
Network

Local Member State
Network

Local Member State
Network

Local Member State
Network

sTesta Network

Member State A
ECRIS instance

Member State B

ECRIS instance

Member State C
ECRIS instance

Member State D

ECRIS instance

Figure 1 – ECRIS connectivity using sTESTA

Protocols and Standards

It is of utmost importance to establish the required technical protocols and standards that must be

respected completely by all ECRIS applications, both the national implementations as well as the

ECRIS Reference Implementation, in order to ensure the technical interoperability of the software

systems.

As a result of the answers to the “Inception Phase Questionnaire”, all Member States unanimously

indicated Web Services using SOAP as being the preferred RPC protocol.

For the sake of completeness, it is interesting to indicate that other standards have been proposed in

the questionnaire but were ruled out: REST, XML-RPC, CORBA, JSON-RPC and Etch.

Web Services using SOAP Messages

A Web Service is divided in two parts:

1. The Service Contract which provides the definition of all the elements required for a
message exchange to take place (such as messages, data types, functions, bindings).

2. The actual implementation that supports the functionality described in the Service
Contract.

15456/10 AL/mvk 16
ANNEX DG H 2B EN

Both parts have to comply with the appropriate standards as they are defined by W3C, so that

interoperability is guaranteed. Within the ECRIS context and based on the replies received from the

Member States to the “Inception Phase Questionnaire” document, the following versions of the

protocols and standards are to be used for implementing ECRIS:

§ Xml Schema Definition (XSD) 1.0 in accordance to the following

− XML Schema Part 0: Primer Second Edition (W3C Recommendation 28 Oct 2004)

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

This version is the latest final version at the time of authoring this document.

− XML Schema Part 1: Structures Second Edition (W3C Recommendation 28 Oct 2004)

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

This version is the latest final version at the time of authoring this document.

− XML Schema Part 2: Datatypes Second Edition (W3C Recommendation 28 Oct 2004)

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

This version is the latest final version at the time of authoring this document.

§ Unicode Standard 5.0.2 (to support UTF-8)
http://www.unicode.org/versions/Unicode5.2.0/

§ eXtensible Markup Language (XML) 1.0 – Fifth Edition (W3C Recommendation 26 Nov
2008)

http://www.w3.org/TR/2008/REC-xml-20081126/

This version is the latest final version at the time of authoring this document.

§ Namespaces in XML 1.0 - Third Edition (W3C Recommendation 26 Nov 2008)

http://www.w3.org/TR/2009/REC-xml-names-20091208/

This version is the latest final version at the time of authoring this document.

§ Web Services Description Language (WSDL) 1.1 (W3C Note 15 Mar 2001)

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

This version is the latest final version at the time of authoring this document.

§ Simple Object Access Protocol (SOAP) 1.2, more specifically:

− SOAP version 1.2 Part 0: Primer – Second Edition (W3C Recommendation 27 Apr
2007)

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

This version is the latest final version at the time of authoring this document.

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.unicode.org/versions/Unicode5.2.0/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

15456/10 AL/mvk 17
ANNEX DG H 2B EN

− SOAP version 1.2 Part 1: Messaging Framework – Second Edition (W3C
Recommendation 27 Apr 2007)

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

This version is the latest final version at the time of authoring this document.

− SOAP version 1.2 Part 2: Adjuncts – Second Edition (W3C Recommendation 27 Apr
2007)

http://www.w3.org/TR/2007/REC-soap12-part2-20070427/

This version is the latest final version at the time of authoring this document.

The aforementioned list of standards is considered as the current mainstream standard in Web

Services. These are fully supported by main industry-level standard tools and implementations.

Additionally, these specifications are currently considered as mature since they have reached final

state between 2004 and 2008.

Please note that the aforementioned protocols and standards form the smallest common compatible

denominator between the different technical platforms supported by the Member States, with the

exception of the PHP platforms which do not fully support some or parts of the standards listed (at

least not out-of-the-box nor with any of the open source non-proprietary tools that are available).

This implies that adoption of these specifications requires a change or upgrade of that platform, at

least partially, so as to ensure proper technical interoperability.

The .NET framework (at least from version 2 and upwards) fully supports the specifications

provided.

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/

15456/10 AL/mvk 18
ANNEX DG H 2B EN

As for the Java platform, the following matrix shows that all major implementations are fully

compatible with these standards (matrix taken from http://wiki.apache.org, the complete matrix can

be found under http://wiki.apache.org/ws/StackComparison):

Standard Axis

1.x

Axis

2.x

CXF IBM

WAS 7.x

JBossW

S

XFire

1.2

Metro

Oracle AS

10g

SOAP

1.1

� � � � � � � �

SOAP

1.2

� � � � � � � �

WSDL

1.0

� � � � � � � �

WSDL

1.1

� � � � � � � �

Please note that even though Web Services were designed to ensure interoperability between

heterogeneous technical environments, quite often this is not the case as different tools do not

interpret or implement in the same way the protocols and standards provided. This fact can affect

the ECRIS Detailed Technical Specifications in two ways:

1. During the design phase, although the service contract and its artefacts are deemed valid
by the standards of a given design tool, such as for example “Altova XMLSpy”, it can be
the case that this same service contract is not considered valid by other tools
implementing the same technical standards (such as for example tools used for generating
programming code). Indeed, some tools are less strict in their implementation of the
standards than others. For example “XMLSpy” and the “.NET “svcutil” tools allow
multiple namespace imports using the <wsdl:import> tag whereas most Java tools
consider this as an error. This can block the developers in using the service contract for
generating the code of their web service implementation.

In order to avoid this specific issue, the service contract and all related artefacts (i.e.

mainly the XSD files) need to be thoroughly validated and tested using the different

platforms used by the Member States, mainly Java/J2EE and the .NET framework.

http://wiki.apache.org/
http://wiki.apache.org/ws/StackComparison

15456/10 AL/mvk 19
ANNEX DG H 2B EN

2. During runtime, interoperability issues can lead to corrupted information or even total
loss of service between two communicating entities.

In order to mitigate this issue, thorough positive and negative tests need to be carried out

on the software implementing the service contract. Although the definition of the test cases

is out of scope of this document, it is worth mentioning that a particular focus should be

put on verifying:

§ The validity of the structure of the SOAP messages in regards to SOAP 1.2

§ The ability of an implementation to properly consume and produce “SOAPFault”
exceptions, either custom or generic as defined in the service contract.

§ The XML structure of the payload of the messages that an implementation produces
and consumes. More specifically the tests should examine:

− Appropriate namespace declaration in generated messages, including single and
multiple declarations of namespaces as attributes in a single element. The
implementations do not necessarily need to support both ways of declaration since
both are equally valid according to the technical standard.

− Appropriate namespace scoping in generated messages.

− Whether the implementation can consume generated messages with all possible
ways of declaring namespaces.

− Whether the implementation can properly generate and validate messages created
from XSDs which contain the tag <xsd:choice>

§ The handling of data types, with focus on dates, numeric and complex custom types
(such as types created using the <xsd:union> tag or types substituted using the
“substitutionGroup” attribute) and enumerated lists of values.

Communication Mode

The communication mode to be used for ECRIS follows closely what is done in the NJR pilot

project: “synchronous” technical calls for delivering the XML messages and “asynchronous”

functional responses.

Synchronous Technical Calls and Asynchronous Functional Responses

The communication mode to be used for the ECRIS implementation is the following:

§ The technical transmission of each message is performed by a web service which in
nature is a synchronous remote call. This means that the transmission process of the
sending system is blocked and waiting until the call returns a value that informs of correct
or incorrect completion of the call on the receiver’s side. The message being sent is an
XML document. The validation of the XML message against the XSD definitions is to

be done synchronously on the call of the web service.

15456/10 AL/mvk 20
ANNEX DG H 2B EN

§ Since the processing of each message cannot be performed immediately but may require
human interventions, the functional response is provided asynchronously. This means
that, in response to a synchronous transmission issued by a sender, another synchronous
transmission is issued by the receiver later in time in order to carry the functional
response to the first transmission. The sending system is not blocked in its execution
while waiting for the response to be transmitted. This implies in particular that the
messages must carry sufficient information so that they can be related one to another (i.e.
message correlation information).

The ECRIS communication mode proposed actually respects the following Enterprise Integration

Patterns:

§ Point-To-Point channel, used for the communication between sending and receiving Member

States

§ Message (and various extensions like Document Message, Event Message and Command

Message)

§ Message Endpoint

The following diagram depicts the usage of the patterns mentioned above, in a sample exchange

between two Member States, were the central authority of one Member State is requesting

information about an individual's criminal record to the central authority of another Member

State.

Point-To-Point Channel

Point-To-Point Channel

C

E

ECRIS Service

ECRIS Service

Request Criminal Record
Message

Receipt Message

The message is

processed for

validity

ECRIS Service
Consumer

ECRIS Service

Consumer

ECRIS
Message Endpoint

Member State A

ECRIS
Message Endpoint
Member State B

Figure 2 – Enterprise Integration Patterns in ECRIS

15456/10 AL/mvk 21
ANNEX DG H 2B EN

Error Types and Error Handling

During the message exchanges various types of errors can occur. Based on the nature of these

errors, they can be grouped into the following categories:

§ Technical errors: these are low-level errors disrupting the transmission of the data
between two ECRIS applications and that are returned synchronously to the caller of the
web service. Typical examples are connectivity issues such as request/response time-out,
a server being unreachable, unavailability of a technical component, etc. which result in
the return of an appropriate HTTP error code. Errors in the validation of the XML
message against the XSD definition (i.e. errors on structure, cardinality, mandatory
values, etc.) are also considered as technical errors and result in the synchronous return of
appropriate “SOAP Fault” exceptions. In particular, custom “SOAP Fault” exceptions are
to be defined in the ECRIS Detailed Technical Specifications with a structure that allows
providing sufficient information on the cause of the validation error.

Such technical errors are typically handled by the IT engineers and/or technical helpdesks.

§ Functional Errors: these are the possible results of functional controls that are to be
performed on the received data in a second step, after the synchronous web service call
has returned successfully. Such controls are for example comparison of values against the
common reference tables, logical comparison between start and end dates, etc. Errors
raised during the functional checks are to be returned in asynchronous messages, using
appropriate error codes that are to be defined in the ECRIS Detailed Technical
Specifications.

Such errors are typically handled by the collaborative work of IT engineers, helpdesks and

ECRIS end users.

§ Business errors: these errors are exception cases or alternate situations that can arise
during the computerised ECRIS dialogues between two Member States’ central
authorities. These are to be considered as business cases that must be foreseen in the
kinematics of messages in the ECRIS Business Analysis. Rather than defining errors and
error codes, appropriate business messages must be foreseen in the business analysis for
dealing with the alternate situations.

This definition of error categories has the advantage of establishing a very clear separation between

technical errors and functional errors. More generally, the idea pursued is that all technical errors

result in the synchronous return of an HTTP error code or of a specific “SOAP Fault” exceptions

while functional errors are to be returned as asynchronous response messages.

Please note that technical server-side processing issues such as bad requests or internal server errors

are well defined within the SOAP 1.2 specification and are not further elaborated in this chapter. For

a complete list of HTTP status codes (i.e. HTTP status codes 2xx, 4xx and 5xx) and their meaning

in the context of SOAP 1.2 please visit http://www.w3.org/TR/soap12-part2/#tabreqstatereqtrans.

http://www.w3.org/TR/soap12-part2/

15456/10 AL/mvk 22
ANNEX DG H 2B EN

Please note also that in the NJR pilot project, during a synchronous call between two NJR systems

of Member State “A” and “B", the NJR system of the receiving Member State “B” systematically

replies with a technical acknowledgment message in order to inform Member State “A” whether the

message delivered could be processed correctly from a technical point of view (i.e. ACK/NACK

message). This “technical processing” means here that the structure and validity of information

contained in the XML message sent by “A” is verified by “B” against the rules defined in the WSDL

file. Later the functional response sent by Member State “B” to Member State “A”, is also

performed using a synchronous call which requires an additional technical acknowledgment to be

sent back by Member State “A” to “B”. In ECRIS such technical “acknowledgment” messages are

not used so as to reduce the complexity of the kinematics. Indeed, the SOAP protocol guarantees

that, if a synchronous call returns with a value indicating correct execution of the call, the call

indeed has been processed correctly by the web service endpoint of the receiving software system

from a technical point of view. As already defined earlier, the correct processing includes in

particular also the validation of the XML message against the rules defined in the XSD definitions.

In case of incorrect technical processing of a call, the protocol foresees the usage of “SOAP Fault”

exception elements that are to be used in ECRIS. For this end, the ECRIS Detailed Technical

Specifications will define specific and customised “SOAP Fault” exceptions carrying sufficient

information related to the cause of the error in the processing, including causes coming from the

non-compliance of the XML document with the predefined XSD definitions. It has to be noted here

that, following best practices of system integration and SOA architecture, implementations should

not expose internal errors (such as for example failure to connect to an internal database or an

internal dependent system) to their callers. Thus, implementations should either respond with HTTP

status code 500, which in the SOAP 1.2 is used to signify an internal server error, or use a custom

“SOAP Fault” exception for notifying the caller that the service is unavailable. Both possibilities

are supported in the ECRIS architecture and should be understood by callers, leaving thus to the

implementer the decision of the most appropriate solution for his technical platform.

15456/10 AL/mvk 23
ANNEX DG H 2B EN

Let’s also further illustrate the different handling of functional and business errors. Let's assume

that Member State “A” sends a notification message to Member State “B” and that this message

contains a reference to a sanction code defined in the common reference tables. Let's now assume

that the code provided for the said sanction is incorrect. Member State “B” will only detect the error

after the message is properly received during the functional validation phase (i.e. the XML message

is valid from a structural point of view). At this point, Member State “B” replies to Member State

“A” with a functional error message so as to indicate the wrong value that was provided for the

sanction. The following UML sequence diagram depicts this transaction:

Member State A

ECRIS Endpoint
Member State B

ECRIS Endpoint

deliverNotification(message:Notification)

deliverFuntionalError(message:FunctionalError)

Figure 3 – An unsuccessful transaction due to a functional error

Let’s reuse the previous example and assume now that the message was received properly (i.e.

technically correct in terms of structure) and that it also contains valid values and passes

successfully the functional controls. Let’s assume however that the notification refers to a person

15456/10 AL/mvk 24
ANNEX DG H 2B EN

that has deceased and that the conviction can thus not be registered in the criminal records. A

business message is delivered to Member State “A” so as to notify of the situation. The following

UML sequence diagram depicts this transaction:

Member State A

ECRIS Endpoint
Member State B

ECRIS Endpoint

deliverNotification(message:Notification)

deliverBusinessMessage(message:BussinesMessage)

deliverReceipt(message:ReceiptMessage)

Figure 4 – A foreseen business message is delivered

Message Validity

As a standard good practice, each message's XML payload has to be validated against the XSD

schema definitions before being transmitted in the communication channel by the sending

application. This will ensure a higher level of acceptance of the messages received in regards to

their structural validity (this does not automatically imply that messages will also be valid in

regards to functional validation rules though) as well as reduce the unnecessary message chattering

using machine resources such as network bandwidth, serialisation and de-serialisation processing

and message validation on the receiver's part.

Connectivity

Connectivity issues have been identified as being quite tricky to handle in the NJR pilot project.

Given that ECRIS and NJR are software applications, the capability to react regarding connectivity

problems is minimal since they cannot intervene on the OSI Layer 3 problems. Furthermore, both

systems use the same decentralised architecture, using multiple different networks through which

the messages are channelled.

However, in order to be able to detect losses of connectivity between two peers, monitoring services

can be foreseen.

15456/10 AL/mvk 25
ANNEX DG H 2B EN

In the first version of the ECRIS technical specifications, these monitoring services are limited to a

simple “isAlive” web service to be defined in the ECRIS Detailed Technical Specifications in order

to keep the implementations simple, given the short timeframe that is available until April 2012.

The “isAlive” service is to be implemented in the same web service end-point as the other ECRIS

web services and indicates to the caller if the end-point is functional and able to respond to calls.

Using this “isAlive” service before transmitting a message so as to confirm the target host's status is

optional but recommended. It is also recommended that in the case of multiple message exchanges

are to be issued within a short time period, this function should only be used once and not

systematically before each web service call so as to avoid unnecessary additional traffic in the

network and unnecessary consumption of server and network resources on both communicating

parties.

Please note that peer services providing additional functionality such as elaborate monitoring of the

status of the various web services, monitoring of the connectivity between various Member States’

ECRIS applications, automated sending of administrative messages, etc. should be kept aside for

later versions of the ECRIS technical specifications. Such services are not considered as essential

for starting the ECRIS data exchanges in April 2012. At first, organisational measures and

precautions should be taken, such as setting up a central entity communicating on planned down-

times of servers, helpdesks for trouble-shooting sTESTA issues, etc. The definition of such

organisational measures is not in the scope of this document.

WSDL/XSD/XML design principles

In addition to the definition of the communication architecture and appropriate versions of protocols

and standards to be used, also defining design principles in regards to the service contract artefacts

is essential so as to achieve proper interoperability between software implementations and ensure

that the quality of the final products will be sufficient.

The following sections describe the design principles to be followed for producing the service

contact and XML schema definitions of ECRIS.

XSD/XML naming convention based on ISO 11179

One of the most important tasks when creating XSDs (on which all XML documents are then in turn

based) is to use naming conventions which will eventually provide well formatted documents that

are easy to read and easy to understand, also for human actors. This is essential for ensuring

semantic interoperability.

15456/10 AL/mvk 26
ANNEX DG H 2B EN

Especially within the ECRIS context, defining proper rules for naming conventions is of importance

since the technical specifications are expected to further evolve in time and also because these

specifications will need to be implemented by many and various persons with different cultures,

backgrounds and knowledge.

The ISO/IEC 11179 – and in particular “ISO/IEC 11179-4: Formulation of data” and “ISO/IEC

11179-5: Naming and identification principles” – definition provides a solid basis on how to build

naming conventions. While saying this, please note that it is not the intention here to establish

ECRIS Detailed Technical Specifications that will necessarily be fully compliant with this ISO

standard. It is rather the idea to use this standard as a guideline in order to produce the required

technical artefacts.

Based on the aforementioned ISO standard, the following requirements and recommendations in

regards to definitions of XSD/XML types and elements are established:

§ A definition shall:

A. be written in British English

B. be stated in the singular form (unless the name itself is a plural, for example
“premises”)

C. state what the concept is rather than what it is not

D. be stated as a descriptive phrase or sentence(s)

E. not contain connecting words such as “of”, “or”, “and”, “the”, etc.

F. contain only commonly understood abbreviations

G. be expressed without embedding definitions of other data or underlying concepts

H. contain only alphanumeric characters

§ Alongside with the aforementioned requirements, a definition should:

A. state the essential meaning of the concept

B. be precise and unambiguous

C. be concise

D. be able to stand alone

E. be expressed without embedding rationale, functional usage, or procedural information

F. avoid circular reasoning

G. use the same terminology and consistent logical structure for related definitions

H. be appropriate for the type of metadata item being defined

Using the above recommendations and requirements for XSD/XML definitions, the

15456/10 AL/mvk 27
ANNEX DG H 2B EN

“Object:Property” scheme is to be used for naming elements, where:

§ Object is the class term (for example “person”, “authority”, “country”, etc.)

§ Property is an element belonging to the referenced class term (for example “first name”,
“surname”, “postal code”, etc.)

The “CamelCase” format is to be applied: all words are joined without using spaces or special

characters for separating them, with each element’s initial letter capitalised within the compound

and the first letter is either upper or lower case — as in "LaBelle" or “BlackColor”. As a general

rule, upper initial letters are to be used for XML entities such as “PersonName”, “Offence”,

“DecisionDate”, etc.) and lower case initial letters for XML attributes such as “id”, “languageCode”,

etc.

Example: Designing a “Person” class

Let’s assume that a complex data type needs to be created so as to represent a “person” type. To that

complex type, the properties “name” and “surname” are recognised. For the sake of simplicity, let’s

assume that “name” and “surname” are simple text representations of a person's name and surname.

Following the conventions defined above, the appropriate name for the type to be defined is

"PersonType": indeed the class is "Person" and its representation is "Type". Furthermore, this

definition contains two properties, “PersonName” and “PersonSurName”. This definition, in XSD,

would look like the following:

<xs:complexType name="PersonType">

 <xs:sequence>

<xs:element name="PersonName" type="xs:string" />

<xs:element name="PersonSurName" type="xs:string" />

 </xs:sequence>

</xs:complexType>

Example 1 – A "PersonType" definition

15456/10 AL/mvk 28
ANNEX DG H 2B EN

Now that the appropriate type definition is created, let’s also define an instance of a “person” type

that can be used in any XML document. The final XSD schema would then look like the following:

<xs:complexType name="PersonType">

 <xs:sequence>

<xs:element name="PersonName" type="xs:string" />

<xs:element name="PersonSurName" type="xs:string" />

 </xs:sequence>

</xs:complexType>

<xs:element name="Person" type="PersonType" />

Example 2 – Defining an element based on "PersonType"

Following that approach, an XML document that would include some instances of the element

“person”, would look like the following:

<People>

<Person>

<PersonName>John</PersonName>

<PersonSurName>Smith</PersonSurName>

</Person>

.

.

.

</People>

Example 3 – XML produced using "Person" element

Using Object-Oriented Paradigms in XML

XML schemas offer a powerful set of tools for constraining and formalising the vocabulary and

grammar of XML documents. It is obvious that the structure of an XML document, as defined by

their schemas, must be created and stored in an organised manner. Developers experienced in

object-oriented design know that a flexible architecture ensures consistency throughout the system

and helps to accommodate extensibility, flexibility, and modularity.

In order to benefit from such advantages, the following object-oriented paradigms will be applied

when designing the XML schemas.

Please note that the aim of using such paradigms is to help rationalising the XML documents

without actually rendering their processing more complicated. Such paradigms usually help

reducing development time and logical errors.

15456/10 AL/mvk 29
ANNEX DG H 2B EN

Encapsulation

The term “encapsulation” refers in the context of XSD and XML to the definition of predefined data

types where each element bundles and carries its own properties as internal elements. Such data

elements should be accessible within the service contract simply by referencing their type.

Using the example from the previous chapter, the "PersonType" element defines that a “person” has

two properties "PersonNameText" and "PersonSurnameText". The "PersonType" element thus

encapsulates all the information relevant to a “person”.

A good practice is to place generic data types such as "PersonType" in a generic schema, usually

referred to as “data dictionary”, which contains all the generic data types to be re-used in different

schemas. Since such a generic schema is actually only a library of generic data types, no root

element is usually required. Instead, it just contains a collection of complex elements defining the

structure and content of each generic component.

In order to be reference-able, such an element must be a “global” element meaning that its

declaration is an immediate child of the <schema> tag in the XSD. Please note that a “local”

element refers to an element declaration that is nested within another component; for example,

"PersonName" is a “local” element within the “global” element "PersonType".

The main advantage of this practice is the ease of reuse of common structures and the fact that

changes to those structures only happen in one place. Another major advantage is that components

can be added to this data types’ library as the business expands. Using encapsulation allows for

good and logical organisation of the data types definitions, flexibility and standardisation.

Even though two technical ways are provided in the standard W3C XML Schema specification for

accessing the data types’ library in a schema, only the <xs:import> tag will be used in ECRIS

instead of <xs:include>. The reason is that <xs:import> is considered the most appropriate approach

for complex designs because included data types preserve their original namespace and thus are

clearly separated from local types. Another, even more important, reason for using <xs:import>

instead of <xs:include> is the fact that the implementation of the versioning to be used in ECRIS

(and defined later in this document) relies on using namespaces in order to denote different versions

of XML schemas. Thus, if the namespace declaration is lost, the versioning implementation

becomes impossible.

15456/10 AL/mvk 30
ANNEX DG H 2B EN

Example: Using encapsulation and <xs:import>

In extension to the example provided in chapter 3.4.1 in which a "PersonType" element was

defined, let's assume now that the schema containing "PersonType" has target namespace

"http://example.com/commons". Furthermore, let's assume that a dictionary needs to be added,

represented by the type "DictionaryType". Since this type represents a specific business

requirement, it is decided that is not suitable to include it in the same namespace as "PersonType”.

The resulting XSD would then look like the following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 xmlns:commons="http://example.com/commons">

 <xs:import namespace="http://example.com/commons" schemaLocation="commons.xsd" />

 <xs:complexType name="DictionaryType">

 <xs:sequence>

<xs:element name="DictionaryName" type="xs:string" />

<xs:element name="Person" type="commons:PersonType" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Example 4 – Encapsulation with <xs:import>

Inheritance

Reuse is another useful paradigm of object-oriented design. In software development reuse is

achieved through inheritance which, in programming languages is provided by the usage of

“subclasses”. In XML schemas this can be achieved by specifying derivations of existing data types

using <xs:extension>.

Such derivations of data types can be realised either by “extension”, meaning by adding new

properties and/or attributes, or by “restriction”, meaning by leaving out specific properties and/or

attributes.

15456/10 AL/mvk 31
ANNEX DG H 2B EN

Example: Inheritance through derivation by extension

Let's assume that it is required to define a "ProgrammerType" element for representing a

programmer. Obviously, a programmer is a person and thus has a name and a surname. In addition,

a programmer also knows some programming languages. The new “ProgrammerType” element is

defined as an extension of the “PersonType” element, to which a new property

“ProgrammerProgrammingLanguages” is added.

The newly created schema would look like the following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:commons="http://example.com/commons"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 targetNamespace="http://example.com/commons">

<xs:complexType name="PersonType">

<xs:sequence>

<xs:element name="PersonName" type="xs:string" />

<xs:element name="PersonSurName" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ProgrammerType">

<xs:complexContent>

<xs:extension base="commons:PersonType">

<xs:sequence>

<xs:element name="ProgrammerProgrammingLanguages" type="xs:string" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>
Example 5 – Inheritance with <xs:extension>

Example: Inheritance through derivation by restriction

Let’s assume now that the "PersonType" has been defined as a person having multiple addresses

and multiple phone numbers. For that purpose, the properties "PersonAddress" and

"PersonPhoneNumber" have been added. The "PersonType" has been modified into something like

the following:

<xs:complexType name="PersonType">

 <xs:sequence>

 <xs:element name="PersonName" type="xs:string" />

 <xs:element name="PersonSurName" type="xs:string" />

 <xs:element name="PersonAddress" type="xs:string" minOccurs="0" maxOccurs="unbounded" />

 <xs:element name="PersonPhoneNumber" type="xs:int" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

</xs:complexType>

Example 6 – "PersonType" definition

15456/10 AL/mvk 32
ANNEX DG H 2B EN

Let's assume now that it is required to define a type for representing students. Each student is a

person and thus has a name and a surname but the business rules define that a student can have only

one address and one phone number.

The "StudentType" can be derived from the "PersonType" element by restriction and would look

like the following:

<xs:complexType name="StudentType">

 <xs:complexContent>

<xs:restriction base="commons:PersonType">

 <xs:sequence>

 <xs:element name="PersonName" type="xs:string" />

 <xs:element name="PersonSurName" type="xs:string" />

 <xs:element name="PersonAddress" type="xs:string" />

 <xs:element name="PersonPhoneNumber" type="xs:int" />

 </xs:sequence>

</xs:restriction>

 </xs:complexContent>

</xs:complexType>

Example 7 – Inheritance using <xs:restriction>

Polymorphism

“Polymorphism” means the ability to assign a different meaning or usage to something in different

contexts – specifically, to allow an object to have more than one form.

In object-oriented programming languages polymorphism implies a different reaction to an input.

More specifically, it is the ability of a subclass to respond differently to the same input. Since XML

is not a behavioural language, polymorphism occurs at the level of properties and attributes.

Example: Polymorphism in XML

Based on the previous example of derivation by restriction, let's assume that the business model

prohibits a student's address to have a length greater than 20 characters. This can easily be realised

by creating a new simple type called "LimitedStringType" which is derived from the base

"xs:string" type and then use this new type instead of the base in the definition of the property

"PersonAddress".

15456/10 AL/mvk 33
ANNEX DG H 2B EN

The resulting schema would then look like the following:

<xs:complexType name="StudentType">

 <xs:complexContent>

 <xs:restriction base="commons:PersonType">

 <xs:sequence>

 <xs:element name="PersonName" type="xs:string" />

 <xs:element name="PersonSurName" type="xs:string" />

 <xs:element name="PersonAddress" type="commons:LimitedStringType" />

 <xs:element name="PersonPhoneNumber" type="xs:int" />

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

</xs:complexType>

<xs:simpleType name="LimitedStringType">

 <xs:restriction base="xs:string">

<xs:maxLength value="20" />

 </xs:restriction>

</xs:simpleType>

Example 8 – Polymorphism with type substitution

Abstraction using “xsi:type”

Another aspect of polymorphism is “abstraction”, which is the ability of a type “A” to appear and

be used like another type “B”.

In object-oriented programming, this allows to manipulate successfully an object instance as long as

its base object type is known, without necessarily caring about the specifics of the object itself. In

practice this is achieved by using inheritance and programming the logic using the parent classes

rather than the subclasses when possible.

A major advantage of abstraction is that it allows defining several different extensions to a class but

still reuse the same programming logic for implementing the common behaviour. It makes it easier

in particular to reach compatibility throughout different versions of the system.

This section proposes to implement abstraction in the ECRIS XML schemas/XML documents by

combining the previous design principles and using the “xsi:type” attribute (which is part of the

http://www.w3.org/2001/XMLSchema-instance namespace).

Indeed, this combination of design principles, usage of “xsi:type” and namespaces allows including

elements of the same type but of different versions in the same structure without rendering this

structure invalid. The main benefit is that it avoids the need to transform information previously

received into a newer format since previous versions of the element structure remain compatible.

http://www.w3.org/2001/XMLSchema-instance

15456/10 AL/mvk 34
ANNEX DG H 2B EN

Another advantage is that it facilitates the processing, for example when using XPATH or

derivatives of it.

Please note that the use of the "xsi:type" attribute in conjunction with parsing libraries used to

serialise or de-serialise XML documents into in-memory objects can be problematic, depending on

how appropriate and complete the parsing software actually implements the W3C standards. Most

commonly this is the case for older versions of such parsers, since software vendors fix such issues

as soon as they are recognised. For example, Apache Tuscany (http://tuscany.apache.org/) had a

well-known issue handling "xsi:type", which was resolved in a fix in 2007.

It is thus recommended that implementers of the ECRIS technical specifications should check their

XML parsing software to verify that the implementation is appropriate and if not update this

software to a later version which fixes such issues.

Example: Using abstraction allows easier navigation

Let’s assume that a type named “AssociationType” has been defined for representing relations

between elements. This type has the properties “AssociationSourceID” and

“AssociationDestinationID” which point to the identifiers (aka ID’s) of referenced elements. For the

sake of simplicity, let’s not consider at this point the type of those ID’s. By its definition, this

relation is N-to-N, from multiple sources to multiple destinations. Let’s assume now that it is

necessary to define a type for N-to-1 relations (i.e. multiple sources to one destination or Many-to-

One) and a type for 1-to-N relations (i.e. one source to multiple destinations or One-to-Many). To

that end, as described previously in this document, it is possible to define two types derived from

the “AssociationType” by restriction called “ManyToOneAssociationType” and

“OneToManyAssociationType”.

http://tuscany.apache.org/

15456/10 AL/mvk 35
ANNEX DG H 2B EN

The XSD then would look like the following:

 <xs:complexType name="AssociationType ">

<xs:sequence>

<xs:element name="AssociationSourceID" type="xs: string" minOccurs="1" maxOccurs="unbounded" />

<xs:element name="AssociationDestinationID" type="xs:string" minOccurs="1" maxOccurs="unbounded " />

</xs:sequence>

</xs:complexType>
<xs:complexType name="ManyToOneAssociationType ">

<xs:complexContent >

<xs:restricti on base="AssociationType">

<xs:sequence>

<xs:element name="AssociationSourceID" type="xs:string" minOccurs="1" maxOccurs="unbounded" />

<xs:element name="AssociationDestinationID" type="xs:string" minOccurs="1" maxOccurs="1" />

</xs:sequence>

</xs:restriction>
</xs:complexContent >

</xs:complexType>

<xs:complexType name="OneToManyAssociationType ">

<xs:complexContent >

<xs:restricti on base="AssociationType">

<xs:sequence>

<xs:element name="AssociationSourceID" type="xs:string" minOccurs="1" maxOccurs="1" />

<xs:element name="AssociationDestinationID" type="xs:string" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>

</xs:restriction>

</xs:complexContent >

</xs:complexType>

Example 9 – "AssociationType" and children types definitions

Based on the XSD definitions above, the XML document containing various relations would look

like the following:

 <Associations>
<Association>

<Associat ionSourceID>aSourceId</AssociationSourceID>

<Associat ionSourceID>bSourceId</AssociationSourceID>

<Associat ionSourceID>cSourceId</AssociationSourceID>

<Associat ionDestinationID>aDestinationId</Associat ionDestinationID>

<Associat ionDestinationID>bDestinationId</Associat ionDestinationID>

<Associat ionDestinationID>cDestinationId</Associat ionDestinationID>

<Associat ionDestinationID>dDestinationId</Associat ionDestinationID>

</Association>

<ManyToOneAssociat ion>

<Associat ionSourceID>aSourceId</AssociationSourceID>

<Associat ionSourceID>bSourceId</AssociationSourceID>

<Associat ionSourceID>cSourceId</AssociationSourceID>

<Associat ionDestinationID>aDestinationId</Associat ionDestinationID>

</ManyToOneAssociation >

<OneToManyAssociat ion>

<Associat ionSourceID>cSourceId</AssociationSourceID>

<Associat ionDestinationID>aDestinationId</Associat ionDestinationID>
<Associat ionDestinationID>bDestinationId</Associat ionDestinationID>

<Associat ionDestinationID>cDestinationId</Associat ionDestinationID>

<Associat ionDestinationID>dDestinationId</Associat ionDestinationID>

</OneToManyAssociation >

</Associat ions>

Example 10 – Sample XML using "AssociationType" and children definitions

15456/10 AL/mvk 36
ANNEX DG H 2B EN

Of course, the resulting XML is well formatted and easy to read, but as soon as processing needs to

be done using some form of XPATH (or derivatives of XPATH or tools internally using XPATH)

for retrieving all associations in the content regardless of their specific type, three different

expressions ("//Association", "//ManyToOneAssociation" and "//OneToManyAssociation") are

required.

To avoid this, the XML document can also be written like the following:

 <Associations xmlns:xsi="http://www.w3.org/2001 /XMLSchema-instance" >
<Associat ion>

<AssociationSourceID>aSourceId </AssociationSourceID>

<AssociationSourceID>bSourceId </AssociationSourceID>

<AssociationSourceID>cSourceId</AssociationSourceID>

<AssociationDest inat ionID>aDestinationId</AssociationDest inat ionID>

<AssociationDest inat ionID>bDestinationId</AssociationDest inat ionID>

<AssociationDest inat ionID>cDestinationId</AssociationDest inat ionID>

<AssociationDest inat ionID>dDestinationId</AssociationDest inat ionID>

</Association>

<Associat ion xsi:type="ManyToOneAssociationType ">

<AssociationSourceID>aSourceId </AssociationSourceID>

<AssociationSourceID>bSourceId </AssociationSourceID>

<AssociationSourceID>cSourceId</AssociationSourceID>

<AssociationDest inat ionID>aDestinationId</AssociationDest inat ionID>

</Association>

<Associat ion xsi:type="OneToManyAssociationType ">

<AssociationSourceID>cSourceId</AssociationSourceID>

<AssociationDest inat ionID>aDestinationId</AssociationDest inat ionID>
<AssociationDest inat ionID>bDestinationId</AssociationDest inat ionID>

<AssociationDest inat ionID>cDestinationId</AssociationDest inat ionID>

<AssociationDest inat ionID>dDestinationId</AssociationDest inat ionID>

</Association>

</Associations>

Example 11 – Sample XML using "xsi:type" to abstract type definitions

Please note that with the usage of the “xsi:type” attribute, it is now possible to request all available

associations from the XML document with a single XPATH expression ("//Association" for

retrieving all associations recursively). On top of that, the XML still validates properly against the

XSD schema defined earlier.

Example: Using abstraction for inserting new extensions into an existing structure

Let’s consider again the previous example defining a dictionary of persons. As a reminder, the

“DictionaryType” element contains a property "PersonType" for the list of persons to be contained

in the dictionary.

15456/10 AL/mvk 37
ANNEX DG H 2B EN

Let’s now assume that it is required to also add programmers into this dictionary. The most

straightforward solution is to add a new property in the “DictionaryType” definition. While this is

very simple, it however implies necessarily changes into the implementations of the consumers of

this dictionary type.

Instead of changing the dictionary type definition, the XML documents simply need to be produced

slightly differently, like the following:

<commons:Dictionary xsi:schemaLocation="http://example.com/commons commons.xsd"

 xmlns:commons="http://example.com/commons"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance">

<commons:Person xsi:type="commons:PersonType">

<commons:PersonName>John</commons:PersonName>

<commons:PersonSurName>Smith</commons:PersonSurName>

<commons:PersonAddress>Cypress Road, 12</commons:PersonAddress>

<commons:PersonPhoneNumber>+44321233111</commons:PersonPhoneNumber>

</commons:Person>

<commons:Person xsi:type="commons:ProgrammerType">

<commons:PersonName>John</commons:PersonName>

<commons:PersonSurName>Doe</commons:PersonSurName>

<commons:PersonAddress>Cypress Road, 13</commons:PersonAddress>

<commons:PersonPhoneNumber>+446545677</commons:PersonPhoneNumber>

<commons:ProgrammerProgrammingLanguages>Perl, PHP, C++, Scala, Java, .NET</commons:ProgrammerProgrammingLanguages>

</commons:Person>

</commons:Dictionary>

Example 12 – Sample XML using "PersonType" and "ProgrammerType"

Please note that this XML is perfectly valid against the XSD and unless the consumer explicitly

needs to use the new property “ProgrammingLanguages” of programmers, no changes are required

in the implementation.

15456/10 AL/mvk 38
ANNEX DG H 2B EN

Example: Using abstraction for inserting new versions of extensions into an existing structure

Let's assume now that it is necessary to version the type definitions. Without delving yet into the

versioning aspects as such (these are elaborated in detail later in this document), let’s assume that

major and minor version numbers are used in the namespace declaration.

Let’s take the following XSD definition that is stored in a file named “commons-v1.0.xsd”:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 xmlns:commons="http://example.com/commons-v1.0"

 targetNamespace="http://example.com/commons-v1.0">

<xs:complexType name="PersonType">

<xs:sequence>

<xs:element name="PersonName" type="xs:string" />

<xs:element name="PersonSurName" type="xs:string" />

<xs:element name="PersonAddress" type="xs:string" minOccurs="0" maxOccurs="unbounded" />

<xs:element name="PersonPhoneNumber" type="xs:int" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ProgrammerType">

<xs:complexContent>

<xs:extension base="commons:PersonType">

<xs:sequence>

<xs:element name="ProgrammerProgrammingLanguages" type="xs:string" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="Dictionary">

<xs:complexType>

<xs:sequence>

<xs:element name="Person" type="commons:PersonType" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Example 13 – "ProgrammerType" definition

Let's assume now that it is required to modify the definition of "ProgrammerType" so that instead of

using a free text field for transmitting the programming languages, a specific collection of values is

used. Let’s also assume that this change is done in a new version v1.1 of the XSD definitions, in a

file called “commons-v1.1.xsd”:

15456/10 AL/mvk 39
ANNEX DG H 2B EN

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:commons-v1.0="http://example.com/commons-v1.0"

 xmlns:commons-v1.1="http://example.com/commons-v1.1"

 targetNamespace="http://example.com/commons-v1.1"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xs:import namespace="http://example.com/commons-v1.0" schemaLocation="commons-v1.0.xsd"/>

<xs:complexType name="ProgrammerType">

<xs:complexContent>

<xs:extension base="commons-v1.0:PersonType">

<xs:sequence>

<xs:element name="ProgrammerProgrammingLanguages" type="commons-v1.1:ProgrammingLanguagesType" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:simpleType name="ProgrammingLanguagesType">

<xs:restriction base="xs:string">

<xs:enumeration value="PHP" />

<xs:enumeration value="JAVA" />

<xs:enumeration value=".NET" />

</xs:restriction>

</xs:simpleType>

</xs:schema>

Example 14 – New version of "ProgrammerType" definition

Please note that essentially, the principles of polymorphism and extensions are used here for

establishing the new version of the XSD, with the notion of versioning being identified in the

namespace.

Now, still using the “xsi:type” attribute in the XML documents, parties interested in using the new

version in addition to the previous version (for example because there is a need to retransmit

information that is available in the previous version) are capable of producing XML documents like

the following:

<commons-v1.0:Dictionary xsi:schemaLocation="http://example.com/commons-v1.1 commons-v1.1.xsd"

 xmlns:commons-v1.0="http://example.com/commons-v1.0"

 xmlns:commons-v1.1="http://example.com/commons-v1.1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<commons-v1.0:Person xsi:type="commons-v1.0:PersonType">

<commons-v1.0:PersonName>John</commons-v1.0:PersonName>

<commons-v1.0:PersonSurName>Smith</commons-v1.0:PersonSurName>

<commons-v1.0:PersonAddress>CypressRoad, 12</commons-v1.0:PersonAddress>

<commons-v1.0:PersonPhoneNumber>+44321233111</commons-v1.0:PersonPhoneNumber>

</commons-v1.0:Person>

<commons-v1.0:Person xsi:type="commons-v1.0:ProgrammerType">

<commons-v1.0:PersonName>John</commons-v1.0:PersonName>

<commons-v1.0:PersonSurName>Doe</commons-v1.0:PersonSurName>

<commons-v1.0:PersonAddress>CypressRoad, 13</commons-v1.0:PersonAddress>

<commons-v1.0:PersonPhoneNumber>+44655677</commons-v1.0:PersonPhoneNumber>

<commons-v1.0:ProgrammerProgrammingLanguages>Perl, PHP, C++, Scala, Java, .NET</commons-v1.0:ProgrammerProgrammingLanguages>

</commons-v1.0:Person>

<commons-v1.0:Person xsi:type="commons-v1.1:ProgrammerType">

<commons-v1.0:PersonName>John</commons-v1.0:PersonName>

<commons-v1.0:PersonSurName>Doe</commons-v1.0:PersonSurName>

<commons-v1.0:PersonAddress>CypressRoad, 13</commons-v1.0:PersonAddress>

<commons-v1.0:PersonPhoneNumber>+44655677</commons-v1.0:PersonPhoneNumber>

<commons-v1.1:ProgrammerProgrammingLanguages>JAVA</commons-v1.1:ProgrammerProgrammingLanguages>

</commons-v1.0:Person>

</commons-v1.0:Dictionary>
 Example 15 – Using multiple versions of "ProgrammerType" using "xsi:type"

15456/10 AL/mvk 40
ANNEX DG H 2B EN

Messages and XML document content

The previous chapters have elaborated on the design principles for defining the structures of the

XML documents to be transmitted between ECRIS applications.

In addition to properly naming, defining and structuring data types and elements, another best

practice is to structurally separate functional information that is necessary for the functional

processing by the consumer and technical information related to the transmission of the message

itself or to specifics of the technical implementation.

“Technical” information is understood here as all data elements that are not directly related to the

functional content of the XML document – i.e. in the context of ECRIS, that are not directly related

to the information on notification of convictions, on requests for information on criminal records

data or responses to such requests – but that are used for transmitting necessary information about

the transmission process, the transactional behaviour or specifics of the software implementation

(for example technical message and/or transaction identifiers, routing information, technical

timestamps, etc.).

The information contained in the XML messages can be categorised as follows:

§ Purely technical information not related to either the dialogue or the functional content of
the message such as security tokens, hash codes, etc. Such information is to be placed in a
specific XML structure named "TechnicalMetaData".

§ Technical information that is related to the dialogue between two Member States (for
example message ID’s, “from-to” information, transaction time-out information, etc..
Such information is to be placed in a specific XML structure named "MessageMetaData".

§ Functional information, directly related to the business process that the message belongs
to (i.e. the business content of the notification, request, response, etc.). Such information
is to be placed under a specific XML structure named "MessageData".

As an example, let’s assume that it has been agreed to use an ID for uniquely identifying any given

message being exchanged between two ECRIS applications. In addition, in the case where there is a

need to request more information regarding a message previously received, a logical connection

needs to be established between the two subsequent messages (i.e. correlation of messages).

In order to do this, two custom properties named "MessageId" of type "MessageIdType" and

"InResponseTo" of type "InResponseToType" are defined.

15456/10 AL/mvk 41
ANNEX DG H 2B EN

In accordance with categories defined above for separating the technical information from the

functional one, these new properties are placed in the separate XML construct contained in the

message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:msg="http://ec.europa.eu/ECRIS/messages-v1.0"

 xmlns:meta="http://ec.europa.eu/ECRIS/messages-metadata-v1.0">

 <soapenv:Head />

 <soapenv:Body>

 <msg:request>

 <meta:MessageMetaData>

 <meta:MessageId>1234</meta:MessageId>

 <meta:TimeStamp>200910150912+0200</meta:TimeStamp>

 </meta:MessageMetaData>

 <msg:MessageData>

<!-- rest of message ommited for brevity-->

 </msg:MessageData>

 </msg:request>

 </soapenv:Body>

</soapenv:Envelope>

Example 16 – Separation of technical information using a separate XML structure

The response to this message would look like the following:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:msg="http://ec.europa.eu/ECRIS/messages-v1.0"

 xmlns:meta="http://ec.europa.eu/ECRIS/messages-metadata-v1.0">

 <soapenv:Head />

 <soapenv:Body>

 <msg:request>

 <meta:MessageMetaData>

 <meta:MessageId>5678</meta:MessageId>

 <meta:InResponceTo>1234</meta:InResponceTo>

 <meta:TimeStamp>201001021345+0200</meta:TimeStamp>

 </meta:MessageMetaData>

 <msg:MessageData>

<!-- rest of message ommited for brevity-->

 </msg:MessageData>

 </msg:request>

 </soapenv:Body>

</soapenv:Envelope>
Example 17 – Reply to the previous message, showing the "InResponseTo" property

Please note that another possibility for structurally separating the technical information from the

functional information would have been to use the header part of the SOAP envelope for placing the

technical meta-data. However this possibility has been discarded in order to facilitate the

implementation and programming work to be performed by the Member States. The SOAP headers

are thus not used in the ECRIS technical specifications.

15456/10 AL/mvk 42
ANNEX DG H 2B EN

The main drawback of not using SOAP headers is that it requires loading in memory the complete

SOAP body for processing the information, also when only technical information needs to be

processed at some point. This can have a drawback on performance for large numbers of messages

in the case where for example an implementation internally uses an ESB (Enterprise Service Bus)

and implements specific routing based only on the message meta-data.

Please note also that existing web service extensions such as “WS-Addressing” were considered but

discarded since, according to the responses to the “Inception Phase Questionnaire”, several Member

States do not support such specific web service extensions.

Common reference tables

In a way that is similar to what is done in the NJR pilot project, the ECRIS Detailed Technical

Specifications need to foresee common reference tables in XML that define a common codification

for predefined lists of possible values for specific XML elements. This indeed reduces the efforts

required for performing additional transliteration/translation each time an XML message is received

since the values contained in the common reference tables are typically translated once and then

reused throughout all message exchanges.

The reference information that is defined already in such common reference tables must however

not be duplicated into the XML messages themselves. Only the codes/IDs must be used in the

ECRIS XML messages. The purpose of the XML messages is indeed only to be processed by the

ECRIS applications and not to be read by humans.

This approach implies however that the following rule must be defined: in the common reference

tables, only additions of records can be allowed. Changes or deletions of information records in a

reference table are thus forbidden once such a reference table has been used in the ECRIS data

exchanges. For each record, the reference tables must foresee validity periods, using “valid from”

and “valid to” dates. Logical removal of a reference value is thus performed by setting the “valid

to” date appropriately, indicating that a value is no longer to be used after a set date. A change in a

reference value is done by logically removing the old value, setting the “valid to” date as just

described, and adding the modified value as a new value in the reference table, setting its “valid

from” date appropriately so that it replaces the value that has been marked as invalid.

15456/10 AL/mvk 43
ANNEX DG H 2B EN

Documentation

While it is important to properly apply design principles when creating an XML Schema or a service

contract, it is equally important to document accordingly the various entities, properties, types and

other significant elements in those two technical artefacts.

Regarding XML Schemas, the <xs:documentation> element of the standard <xs:annotation>

structure is to be used for providing human-readable documentation. In addition to the fact that

using this element allows to provide valuable in-line documentation for future implementers of the

specifications, this documentation can also easily be extracted in other formats such as HTML or

PDF by using appropriate XML style-sheets. The <xs:documentation> elements also allow

translating the documentation in different languages, indicated by using the " xml:lang" attribute.

Similarly, for service contracts the <wsdl:documentation> element is to be used for adding

appropriate documentation. The usage of this element is identical to the usage of the

<xs:documentation> element with the exception that it does not support multiple languages. A

custom XML type will be defined in the ECRIS Detailed Technical Specifications, extending the

base <wsdl:documentation>, in order to provide support to multiple languages for this element.

Please note that the language codes to be used in the “xml:lang” attribute are the 2-letter codes

defined in the ISO 639-1 standard, using lower case. Furthermore, please note that that the

documentation provided in the initial version of the ECRIS Detailed Technical Specifications by

iLICONN will be English.

15456/10 AL/mvk 44
ANNEX DG H 2B EN

Versioning

This chapter is divided in two main parts:

§ The first subchapter elaborates on the versioning concepts and various possibilities and
techniques that can be applied to XSD/XML and web services in order to facilitate the
implementation of versioning.

§ The second subchapter describes how versioning is implemented on the level of the
ECRIS Technical Specifications.

Concepts

Any data model usually evolves through time, as the business or functional requirements that this

model supports evolve and change. It is rarely the case that a data model defined remains the same

throughout its lifecycle. The same is also true for any API or service provided by an application,

since functions can change name to represent something new or even change totally their behaviour

in order to accommodate the evolution that any software product goes through its lifecycle.

To solve the interoperability issues created from such very much wanted evolutions, proper

versioning needs to be considered.

Introduction

In general, versioning provides the concepts, methods and tools so as to handle the interoperability

throughout the evolutions of any information entity. More specifically, versioning introduces the

following concepts so as to tackle the problems created during such evolutions:

§ Forward Compatibility: The ability to accept input intended for later versions.

§ Backwards compatibility: A relationship between two components, where a new
component provides all of the functionality of the old component.

These concepts are realised using the following two principles.

§ Extensibility: A principle where the implementation takes into consideration future
growth.

§ Graceful Degradation: A principle that enables a system to continue operating properly
in the event of the failure of (or one or more faults within) some of its components.

The way these concepts are actually implemented, using the principles defined above, is based on

the strategy that needs to be defined when versioning is required. This strategy is in itself a

design/architecture approach that defines the context within which changes are deemed backwards

compatible, whether a system should support forward compatibility, how compatibility is achieved

or how degradation is implemented for functionality and/or information that are becoming obsolete.

15456/10 AL/mvk 45
ANNEX DG H 2B EN

Please note that the term “degradation”, when used in the context of information, usually implies

transformation of the information from an old and obsolete format to a new format. With that in

mind, it is nearly impossible to elaborate a proper versioning strategy that will allow for no

transformation of information, regardless of the changes in structure or content.

Versioning concepts in XML schema design

XML document’s structure and content definitions as well as validation through the usage of XSD

schemas is important in order to ensure that the information exchanged follows the rules that have

been agreed by the exchanging parties. Since such rules are susceptible to change in time, version

concepts are required so as to be able to create schemas that can properly evolve without creating

corruption or major incompatibilities in the XML information that has been already exchanged

previously or that will be exchanged in the future.

The practices followed in regards to versioning in XSD schemas are design time practices, meaning

that they do not require the software using the said schemas for validation to implement a special

logic for performing the validation.

These design practices fall into the following high level categories:

§ Schema versioning

§ Designing for extensibility

§ Decoupling dependencies

More specific examples of such practices are presented below.

Schema versioning – using a new XML namespace for incompatible version releases

Versioning the “targetNamespace” attribute is a disruptive change, meaning that XML document

instances will not validate successfully until they are changed to use the new “targetNamespace”

value. Since this is a disruptive change it should be used only for major versioning changes in the

XSD schema.

Note also that during the de-serialisation process (from XML to in-memory instances of software

value objects), the code generator of the XML parsing software which reads the XML document and

generates the software value objects uses precisely the namespace for identifying the appropriate

classes of the value objects to be created.

As an example, assuming the following definition for the common elements in the ECRIS

namespace:

15456/10 AL/mvk 46
ANNEX DG H 2B EN

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http:/ /www.w3.org/2001/XMLSchema" targetNamespace="http://

ec.europa.eu/ECRIS/common/v1.0">

.

.

.

</xs:schema>

Example 18 – Version identifiers in the namespace declaration

Following the principle described above, the next major version would look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://

ec.europa.eu/ECRIS/common/v2.0">

.

.

.

</xs:schema>

Example 19 – Changing version identifiers in the namespace declaration

Decoupling dependencies by using proxies

Quite often, it is required to use in XML schemas data types that are prone to future changes either

in their structure or in their predefined lists of possible values. Direct dependencies of an XML

schema with such volatile elements result in frequent version iterations, not because the schema

itself changed for implementing extra functionality or behaviour, but only for the reason that this

specific element, on which the schema depends, changed.

To minimise version iterations, the object-oriented "proxy" design pattern can be applied. The

“proxy” is an object acting as an in-between element that allows hiding complexity of the

referenced data type, keeping code changes to a minimum when a new version of the encapsulated

object is created and defining additional functionality.

Using the principle of polymorphism explained earlier in this document, it is possible to encapsulate

a volatile data type by defining an extension. The volatile data type is then imported into the XML

schema rather than declared in it so that when new versions of the data type are defined, only the

import statement is modified.

Please note that XML documents produced by using the “proxy” technique described here are not

completely autonomous, which can have as a result that they may contain at some point invalid

references to old data elements.

15456/10 AL/mvk 47
ANNEX DG H 2B EN

Let’s illustrate this principle by using an example of dependency on an XML schema provided by a

third party. Let's assume that a list of possible values for cities, on which the XML schema relies, is

produced and maintained by a third party and looks like the following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 xmlns:cities="http://cityprovider.com/cities-v1.0"

 targetNamespace="http://cityprovider.com/cities-v1.0">

<xs:complexType name="CityType">

<xs:sequence>

<xs:element name="CityName" />

<!-- further structure ommited for brevity-->

</xs:sequence>

</xs:complexType>

<xs:simpleType name="CityNameType">

<xs:restriction base="xs:string">

<xs:enumeration value="Brussels" />

<xs:enumeration value="London" />

<xs:enumeration value="Paris" />

<xs:enumeration value="Berlin" />

<!-- further city names ommited for brevity-->

</xs:restriction>

</xs:simpleType>

</xs:schema>

Example 20 – Schema defining possible values for city names

In order to avoid being dependent on the changes the third-party wishes to implement in his

schema, it is possible to define a proxy named "CityProxyType" that extends the "CityType"

provided by the third party:

Example 21 – Schema defining proxy type for "CityType"

15456/10 AL/mvk 48
ANNEX DG H 2B EN

If at some point in the future the third party decides to add, change or remove default values or even

change the structure of the "CityType" element, only an adjustment of the "CityProxyType" will be

necessary rather than implementing changes in all other schemas.

Versioning concepts in Web Services

Due to the fact that web services are defined in XML, they are also candidate for applying the

versioning principles and concepts mentioned above. In that respect, different design approaches

were progressively established during the years of evolution of web services. Such approaches are

nowadays common and endorsed by major vendors (such as IBM, Microsoft and Oracle) and do not

require any extra software implementation or specific software products to work since they leverage

the abilities already provided by the XSD and WSDL specifications.

The approaches are briefly presented here so as to give a high level overview of the possibilities.

Using major version number in the WSDL target namespace and name of the WSDL file

Following this approach, when designing a web services contract, the major number of the release is

embedded in the WSDL target namespace. By encoding only the major release number in the

namespace, successive minor releases share the same namespace and so are compatible.

The following snippet illustrates this versioning principle for the "ECRISService" web service:

<definitions name="ECRISService -v1.0.wsdl"

targetNamespace="http://ec.europa .eu/ECRIS/service-v1.0"

..

Example 22 – Using version numbers for schema file name and target namespace

Versioning data types according to XSD conventions and import them into the WSDL contract

Generally it is good practice to physically separate the definitions of data-types that a web service

uses and to place them in separate XSD files, with their own namespaces, rather than bundle them

in the types section of a WSDL document. In particular, this increases the readability and

maintainability of the WSDL files and avoids that the service contract is cluttered and confusing to

the untrained eye.

15456/10 AL/mvk 49
ANNEX DG H 2B EN

Based on such practice, whenever the structure of the information transmitted in message exchanges

needs to be modified, different approaches can be used for the versioning of the XML schema

definitions, such as for example embedding the date of creation, using a major-only or a

major/minor scheme (such as for example a –v1 or –v2.1 suffix). While all are suitable for the

needs of versioning, each approach has strengths and weaknesses and the choice on which one to

use should depend on the principles followed for designing the service contract.

The following example gives an overview of using the creation date for versioning the XSD

artefacts. Please note in bold the namespace declaration, the schema location for the common types

as well as the fact that the WSDL contract namespace is using also a major/minor version to reflect

these changes.

<wsdl:types>

 <xsd:schema targetNamespace="http://ec.europa.eu/ECRIS/service-v1.1"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://ec.europa.eu/ECRIS/common/2010/08"

 schemaLocation="./common.xsd"/>

 ...

 </xsd:schema>

</wsdl:types>

Example 22 - Using <xsd:import> to import schema definitions in wsdlWSDL

Encoding major and minor version in the target namespace of the WSDL <types> section

According to the practice described above, the data-types used in the WSDL interfaces should be

versioned separately. The WSDL then typically imports these data-types to be used and either

defines elements that extend the types provided by the XML schema(s) being imported or uses the

types directly for defining the service contract. When importing the XML schema(s), a namespace

with an explicit major and minor number should be used.

15456/10 AL/mvk 50
ANNEX DG H 2B EN

In the snippet below, please note in bold the change in minor version for the WSDL schema:

<wsdl:types>

<xsd:schema targetNamespace = "http://ec.europa.eu /ECRIS/service -v 1.1"
xm lns:xsd= "http: //www.w3.org/2001 /XMLSchema ">

<xsd:import namespace ="http: //ec.europa .eu /ECR IS/xsd/common/2010 /08 "

schemaLocation =" ./common.xsd" />
...

</xsd:schema>

< /wsdl:types>
Example 23 – Using version numbers in the target namespace of types defined in the WSDL declaration

Using major and minor version in the web service interface

In web services, the term “interface” refers to the definition of the operations that can be performed

and the in- and output messages used. In WSDL 1.1 this is also known as “portType” (which has

been renamed “interface” in WSDL 2.0).

For implementing versioning in web services, it is good practice to define an explicit interface for

each version of the web services and to embed the major and minor version numbers in its the

definition.

Successive versions of the “ECRISService” should be named “ECRISService_v1.0”,

“ECRISService _v1.1”, “ECRISService_v1.2” etc. By making the interface version explicit it

allows the same code-base to implement different versions of the same web services interface.

15456/10 AL/mvk 51
ANNEX DG H 2B EN

The following example shows the definition of the "ECRISService" where version 1.0 supports

only the “deliverNotification” operation whereas version 1.1 also supports the "requestStatus"

operation. Please note also that in this example version 1.1 is backwards compatible, since it

supports all the operations provided by the previous version without any change to these operations

signatures.

<portType name="ECRISService_v1.0">

<operation name ="deliverNotification ">

<input message="tns:notification" name="deliverNotification"/>

<output message="tns:notificationResponse " name="deliverNotification Response "/>

</operation>

</portType>

<portType name="ECRISService_v1.1">

<operation name ="deliverNotification ">

<input message="tns:notification" name="deliverNotification"/>

<output message="tns:notificationResponse " name="deliverNotification Response "/>

</operation>

<operation name ="requestStatus ">

<output message="tns:statusResponse " name="requestStatusResponse "/>

</operation>

</portType>

Example 24 – Using version numbers in "portType" definition

Versioning “web service endpoints” in accordance to versions of the web service interface

The “web service endpoint” (also known as “port” in WSDL 1.1) is the declaration in the WSDL file

of the piece of software that actually implements the web services being defined.

Versioning the web service endpoints together with the web services interface allows different

versions of the same interface to be bound to and handled by either one web service endpoint or

different versions of the same web service endpoint.

15456/10 AL/mvk 52
ANNEX DG H 2B EN

In the following snippet, the same web service endpoint is handling two different versions of the

interface “ECRISService”. Please note in bold the different versions of the interface actually

pointing to the same web service endpoint:

<wsdl:service name="ECRISService-v1.0">

 <wsdl:port name="tns:ECRISServicePort-v1.0" binding="tns:ECRISServiceBinding-v1.0">

 <soap:address location="http://plublic.host.at.stesta/ecris/service"/>

 </wsdl:port>

</wsdl:service>

<wsdl:service name="ECRISService-v1.1">

 <wsdl:port name="tns:ECRISServicePort-v1.1" binding="tns:ECRISServiceBinding-v1.1">

 <soap:address location="http://plublic.host.at.stesta/ecris/service"/>

 </wsdl:port>

</wsdl:service>

Example 25 – Using version numbers in the service endpoint definition

Versioning solution for ECRIS

As already described in the “Inception Report” document, it has been already identified in the NJR

pilot project that the "big bang" roll-out approach, which requires all software systems of all partner

Member States to be deployed simultaneously, does not work well when updates or changes have to

be performed in the implementations. This is obvious in an environment such as the one of NJR and

ECRIS where multiple partners, each with different schedules and constraints, need to be able to

work on their software implementations without directly depending on the other partners.

It is thus necessary to define a versioning strategy that ensures that software implementations of the

ECRIS technical specifications, which have not yet been upgraded to be compliant with the latest

agreed changes, can still function correctly.

Please note that the term “compatibility” here refers to the technical compatibility of the artefacts

that are commonly defined and exchanges between ECRIS applications, namely the WSDL files, the

XSD files and the XML messages being transmitted between systems as well as the common

reference tables used to facilitate the exchange of judicial information.

Versioning strategy

Overall, the following events in the versioning strategy are defined:

§ Minor backwards incompatible change(s): for example a new restriction is added,
minor changes are applied in the structure of a data type, a web service is altered by
adding a new return message, or information is added in the common reference tables.

§ Major backwards incompatible change(s): for example massive changes in the XML
structure, web services or XML data types.

15456/10 AL/mvk 53
ANNEX DG H 2B EN

Please note that the concept of “minor compatible” versions cannot be considered. Indeed, even if a

small change keeps the compatibility on the level of the technical validation of the XML message

against its XSD definition, it does not imply that the implementation that processes the data can still

function properly without being adapted. Indeed, even minor changes such as making a mandatory

element optional, adding a new record in a reference table or increasing the length of a text element

may disrupt the functional and/or business processing of the information.

In view of those events and their lifeline, it is proposed to use the following versioning format:

X.Y

Each letter represents a positive integer number:

§ X is the number of iterations in which major incompatible changes have occurred

§ Y is the number of iterations in which minor incompatible changes have occurred

There is no limit to the number of changes performed per iteration. Also, multiple changes of

various degrees can happen within the same iteration (for example 3 minor incompatible changes

and 2 major incompatible changes). In such a case, the iteration number of the higher degree is only

iterated, whereas the iteration number of the lesser degree is set to 0.

More concretely, assuming the ECRIS Detailed Technical Specifications are on version 1.9 and 3

minor incompatible changes are decided (for example increasing the size of a text field, removing

the size restriction all-together of another field and adding a new element) the new version that will

be produced will be versioned as 1.10. However, if along the changes mentioned above were

included also the addition of a totally new structure within a message as well as a deep change in

the structure and kinematics of an existing functionality, the new version would then be tagged as

2.0.

Thus, based on the example given above, the following explains the compatibility relation between

versions:

Version 1.9 is incompatible with version 1.10, which is incompatible with version 2.0

The definition of the future versions of the ECRIS technical specifications, as well as all future

changes to these specifications, will need to be agreed upon in judicial and technical workgroups

involving all Member States experts, with proper coordination and communication to be performed

by a central entity.

15456/10 AL/mvk 54
ANNEX DG H 2B EN

The versioning solution is based on the following rules:

§ Each ECRIS implementation must be able to support 2 versions of the ECRIS technical
specifications at any given time. This allows avoiding “big-bang” deployments and each
Member State can upgrade its implementation independently from the other Member
States.

Please note that this rule does not impose keeping two versions running and operational if

the previous version is no longer used by any Member State. Ideally, as soon as a previous

version stops being actively used, the Member States experts should agree and coordinate

its withdrawal within the ECRIS technical workgroups.

§ In addition, all messages within a functional transaction must be sent in the same version
of the specifications. The functional transaction is understood as being the complete
sequence of interrelated messages that are sent asynchronously between two Member
States for completing a business dialogue (for example a request and then the response to
the request).

Example: if Member State “A” sends a request to Member State “B” in version 1.4, even if

“A” and “B” both already support v1.5, “B” must still send the response back in version

v1.4. However new functional transactions must be sent in the newer version 1.5. This

implies that the shift to a newer version is achieved only progressively between two ECRIS

partners.

§ Because of the progressive transition to newer versions described earlier, it is necessary
to define a maximum duration for these functional transactions in the ECRIS Detailed
Technical Specifications. If this is not done, there is a risk that upgrades to newer
versions remain blocked because functional transactions remain pending too long.

§ If a new version is available and implemented by two Member States, and as soon as
messages have been sent in the newer version, starting new functional transactions (for
example sending new requests or new notifications) in the older versions must not be
allowed. The Member State implementation receiving a message of a new functional
transaction in an old version must return a specific “SOAP Fault” error code (to be
defined in the detailed technical specifications).

§ As already described earlier, it is not allowed to remove or modify records in the
common reference tables. For removals, it is foreseen to utilise expiration dates whereas
modification of an existing value will always be performed by adding a new element with
the modified value.

15456/10 AL/mvk 55
ANNEX DG H 2B EN

The fact that the ECRIS technical specifications are versioned and evolve in time implies a soft rule

for the national implementations of the ECRIS technical specifications: the Member States

implementations should not try to store the XML messages received as such but they should rather

extract the information contained in the XML messages, store this information independently from

the XML structure and discard the XML messages when the functional transaction is finished. When

retransmitting data received earlier, the national implementations should be able to extract the

information previously stored and transform it into the appropriate XML structure at that moment

for sending it to other Member States.

Versioning strategy implementation on the Service Contract

The versioning strategy described above is implemented on the level of the WSDL service contract

using the XSD/XML design principles described earlier in this document:

§ Major and minor backwards incompatible version numbers are used in the names of the
WSDL and XML schema files as well as in the WSDL and XML schema target
namespaces.

§ The web service interface name (aka “portType”) is suffixed with the major and minor
version numbers.

§ All XML messages defined in the WSDL contract are suffixed with the major and minor
version numbers.

§ All web service endpoints (i.e. bindings) that are defined in the WSDL contract are
suffixed with the major and minor version numbers.

No additional software components, services or kinematics are added in the ECRIS technical

specifications in order to implement the versioning strategy. The implementation of the versioning

indeed relies on the fact that the invoker of a web service knows before issuing the call which

version and which endpoint he intends to use. The following UML sequence diagram depicts this

implementation:

15456/10 AL/mvk 56
ANNEX DG H 2B EN

Figure 5 – “A” chooses the appropriate version and endpoint to use for sending a notification to “B”

In order to implement this strategy, each Member State implementation must locally store for all

other Member States implementations the information of which web service end-point supports

which version of the ECRIS technical specifications and at which URL address these web service

end-points are available (i.e. this information is defined in the WSDL declarations of each web

services implementation). In this way, each Member State implementation knows exactly where to

send which version of the XML messages for each Member State.

The WSDL declarations of all Member States implementations will thus need to be managed by a

central entity. In particular, when changing web service end-points, either by implementing new

versions or by discarding previous versions, the Member States should first perform appropriate

tests and then inform and transmit the modified WSDL declarations to the central entity. The central

entity will then publish the WSDL declarations of all Member States and inform all stakeholders

about the dates on which switches to newer versions will be done, when modified implementations

will be deployed by the Member States, etc.

15456/10 AL/mvk 57
ANNEX DG H 2B EN

It needs to be underlined that when a Member State produces the service contract for its ECRIS

implementation, special care has to be taken when filling in the "location" attribute of the

<soap:address> element included in the <wsdl:service> definitions, since this will be the URL

address that other Member States will use in order to send their XML messages. Thus, the URL

address declared in this “location” attribute should be an address that is accessible from the other

Member States via sTESTA rather than an internal network address.

Example: Versioning implementation in the WSDL contract

Let’s assume that a minor version change has occurred in the ECRIS technical specifications so as

to illustrate the effect that it will have in the web service contract.

Due to constraints applied from a business process, the allowed size of the property

"RequestingAuthority" of type "xsd:string" has been restricted to 10 characters. After performing

this modification, the new XSD file will look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 targetNamespace="http://ec.europa.eu/ECRIS/messages-v1.6">

<xs:complexType name="RequestMessageType">

<xs:sequence>

<xs:element name="RequestingAuthority">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:length value="10" />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>
Example 26 – A new version of the XML schema is produced

Please note in bold the change of the minor incompatible version counter in the target namespace.

15456/10 AL/mvk 58
ANNEX DG H 2B EN

After that change, and in view of supporting at least two versions backwards, the WSDL will look

like the following:

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ecris-messages-v1.11="http://ec.europa.eu/ECRIS/messages-v1.11"

 xmlns:ecris-messages-v1.12="http://ec.europa.eu/ECRIS/messages-v1.12"

 xmlns:ecris-service-v1.11="http://ec.europa.eu/ECRIS/service-v1.11"

 xmlns:ecris-service-v1.12="http://ec.europa.eu/ECRIS/service-v1.12"

 xmlns:tns="http://ec.europa.eu/ECRIS/contract"

 targetNamespace="http://ec.europa.eu/ECRIS/contract">

<wsdl:types>

<xs:schema targetNamespace="http://ec.europa.eu/ECRIS/service-v1.11" elementFormDefault="qualified">

<xs:import namespace="http://ec.europa.eu/ECRIS/messages-v1.11" schemaLocation="messages-v1.11.xsd" />

<!-- other definitions ommited for brevity-->

</xs:schema>

<xs:schema targetNamespace="http://ec.europa.eu/ECRIS/service-v1.12" elementFormDefault="qualified">

<xs:import namespace="http://ec.europa.eu/ECRIS/messages-v1.12" schemaLocation="messages-v1.12.xsd" />

<!-- other definitions ommited for brevity-->

</xs:schema>

</wsdl:types>

<wsdl:message name="NotificationRequest-v1.11">

<wsdl:part name="NotificationRequest" type="ecris-messages-v1.11:NotificationRequestType"/>

</wsdl:message>

<wsdl:message name="NotificationRequest-v1.12">

<wsdl:part name="NotificationRequest" type="ecris-messages-v1.12:NotificationRequestType"/>

</wsdl:message>

<!-- other definitions ommited for brevity-->

<wsdl:portType name="ECRISService-v1.11">

<wsdl:operation name="deliverNotification">

<wsdl:input message="tns:NotificationRequest-v1.11"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:portType name="ECRISService-v1.12">

<wsdl:operation name="deliverNotification">

<wsdl:input message="tns:NotificationRequest-v1.12"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ECRISServiceBinding-v1.11" type="tns:ECRISService-v1.11">

<!-- further binding configuration ommited for brevity-->

</wsdl:binding>

<wsdl:binding name="ECRISServiceBinding-v1.12" type="tns:ECRISService-v1.12">

<!-- further binding configuration ommited for brevity-->

</wsdl:binding>

<wsdl:service name="SOAP_1.2_ECRISService-v1.11">

<wsdl:port name="ECRISServicePort-v1.11" binding="tns:ECRISServiceBinding-v1.11">

<soap:address location="http://public.host.at.stesta/ecris/service"/>

</wsdl:port>

</wsdl:service>

<wsdl:service name="SOAP_1.2_ECRISService-v1.12">

<wsdl:port name="ECRISServicePort-v1.12" binding="tns:ECRISServiceBinding-v1.12">

<soap:address location="http://public.host.at.stesta/ecris/service"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions> Example 27

– A WSDL declaration supporting two different versions

Without removing the definitions of the previous web services, a new version for each appropriate

part (i.e. schema, portType, binding and service) was added so as to support the new minor

incompatible version. Web service consumers who are not (yet) interested in the new version of the

web services can still use the previous version for as long it remains available.

15456/10 AL/mvk 59
ANNEX DG H 2B EN

The same approach can also be used when a major incompatible change is performed. Also, the

number of previous versions that are supported can be expanded if necessary and of course future

versions can already be added for beta testing if required.

Tracking changes

Being able to identify the changes that have been performed through the lifecycle of an XML

schema or of a service contract is quite critical. Given that XML is a descriptive language, tracking

changes can be achieved easily by using comments within the XML schema or service contract

definition. More concretely, comments are to be placed both in-line above the element that was

changed, specifying the version within which the change took place, the actual date when it was

performed, the contact e-mail address of the organisational entity that was responsible for

performing the change in the technical artefact and a short description of what exactly was changed,

as well as on the top of the file providing an overall description of the changes performed for each

version. The implementation approach for tracking changes remains the same as with

documentation: the <xs:documentation> element is to be used.

For example, let's assume that Mr. John Smith, following an ECRIS Expert Group meeting

performed a change in the "commons-v1.0.xsd" XML schema and modified the length of the

property "PersonName" of type "xsd:string" from 20 to 30 characters. The newly versioned

“commons-v1.1.xsd” file would look like the following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:commons="http://example.com/commons-v1.0"

 targetNamespace="http://example.com/commons-v1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xs:annotation>

 <xs:documentation xml:lang="en">Date:01/04/2012 Contact:ecris-rep@ec.europa.eu Comment: Initial Version</xs:documentation>

 <xs:documentation xml:lang="en">Date:12/06/2012 Contact:ecris-rep@ec.europa.eu Comment: Updated by Mr. John Smith. Based on

the decision of the Expert Group on May 12th, 2012, the PersonName is changed from 20 to 30 characters so as to accommodate bigger

names</xs:documentation>

 </xs:annotation>

 <xs:complexType name="PersonType">

 <xs:sequence>

<xs:element name="PersonName">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:annotation>

 <xs:documentation xml:lang="en">Version :1.1 Date:12/06/2012 Contact:ecris-rep@ec.europa.eu Comment: Changed

size to 30 chars based on decision of Expert Group</xs:documentation>

</xs:annotation>

<xs:length value="30" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <!-- Other elements ommited for brevity-->

 </xs:complexType>

</xs:schema>

Example 28 – Tracking changes with comments

15456/10 AL/mvk 60
ANNEX DG H 2B EN

Binary Attachments

The legislative framework of ECRIS foresees that optionally, Member States can send fingerprints

as part of the personal information included in requests, notifications or information messages.

Additionally, some Member States mentioned an interest for exchanging binary information such as

scanned versions of judicial decisions, scans of identification tokens (for example ID cards or

driver's license). Given that fingerprints and attachments are binaries, the same technical

mechanism could be used for transmitting such content.

Regardless of the implementation particulars which are discussed later in this chapter, the functional

context for binary attachments has to be set by defining first which binary types for attachments

should be allowed and defining the appropriate limitations.

Fingerprints (NIST files)

In regards to fingerprints, during the preliminary analyses performed in the “Inception Phase” it

appeared that the prominent formats for exchanging fingerprints information are based on the

Interpol-implementation of ANSI/NIST-ITL 1-2000. Derivatives of this format are already used by

other European projects such as in particular “EURODAC” and “PRÜM”.

NIST files allow not only sending the actual binary images of the scanned fingerprints but also

provides a set of place-holders based on XML for exchange of meta-data.

One of the main differences with other European projects foreseeing the exchanges of fingerprints

is that in ECRIS, the fingerprints are an additional option next to the structured conviction data to

be transmitted in the XML messages. The personal data of the individual must already necessarily

be transmitted in this XML message and does not need to be included again in parallel into a NIST

file. Furthermore, in ECRIS the fingerprints are considered solely for facilitating the identification

of the individual to which a request or conviction information relates to rather than trying to identify

several possible suspects.

It is assumed that the fingerprints to be exchanged optionally in ECRIS will be used for performing

ten-prints against ten-prints matching during the identification process. Therefore, the focus lies on

defining appropriate manners for transmitting primarily the binary ten-print image files. In

particular, additional information such as minutiae records, latent print images, facial marks, any

other biometric data and XML meta-data possibly embedded in the NIST files are considered

optional.

15456/10 AL/mvk 61
ANNEX DG H 2B EN

As a result, the optional exchange of fingerprints in ECRIS is to be performed by joining NIST files

as binary attachments to the XML messages to be exchanged between the Member States. The NIST

file should primarily contain the ten-print fingerprint image and optionally the palm-print images (if

available), as grey-scale images of a resolution of 500 dpi, encoded and compressed with the

“Wavelet Scalar Quantization” algorithm (WSQ).

Please note that the definition of the detailed content of the NIST file is out of scope of the ECRIS

Technical Specifications project. It is therefore recommended to apply the same standard for NIST

files as the one that has been defined for the PRÜM project. The detailed definition of this standard

can be found in the Council Decision 2008/616/JHA of 23 June 2008 on the implementation of

Decision 2008/615/JHA on the stepping up of cross-border cooperation, particularly in combating

terrorism and cross-border crime, more specifically in “CHAPTER 2: Exchange of dactyloscopic

data (interface control document)” of the annex.

Binary attachments limitations

File types

The binary attachments are limited to NIST files only in the first version of the ECRIS technical

specifications in order to keep the implementations as simple as possible, given the short timeframe

available until April 2012. Furthermore, allowing other types of files would open the door to

potential security problems (also in the case of PDF files) and additionally potentially raise data

protection issues since the content of such files cannot be easily limited or automatically verified.

Please note that it is not technically possible to limit the type of binary attachments on the service

contract level, at least not without using additional extensions to the web service specifications.

Thus, each implementation of the ECRIS technical specifications that supports binary exchanges,

either produced by the Member States or the ECRIS Reference Implementation to be provided by

the European Commission, must specifically check the MIME type of the received binary

attachment during the functional validation phase and before further processing the file. In the case

that the file is not a NIST file, a specific error code – to be defined in the ECRIS Detailed Technical

Specifications – must be returned to the sender.

Message size

The total size of a message, including the XML payload as well as all binary files attached, is

limited to 10 MB.

15456/10 AL/mvk 62
ANNEX DG H 2B EN

Binary attachments implementation specification

The communication protocol defined earlier – SOAP 1.2 – provides already the necessary features

so as to allow binary attachments. More specifically, two popular ways for sending binary

attachments are supported: “SOAP with attachments” (SwA or also named “MIME for Web

Services”) and MTOM.

DIME, which is mentioned here for the sake of completeness, could be considered as well a

reasonable approach but has been superseded by MTOM. Also, please note that “Base64” encoding

has also been considered but deemed inappropriate, both due to the fact that the final “Base64”

encoded binary ends up being, on average, 37% larger than the raw, non-encoded binary data as

well as because the parser on the receiving side needs to know about the encoding so that it can

decode the payload.

It is also necessary to mention here the interoperability issues that using binary attachments in

SOAP messages can raise. In regards to the Java/J2EE platform, the following matrix provides an

overview of the specifications that different platforms support (courtesy of http://wiki.apache.org,

the complete matrix can be found under http://wiki.apache.org/ws/StackComparison)

Standard Axis

1.x

Axis

2.x

CXF IBM

WAS

7.x

JBossW

S

XFire

(1.2)

Metro @

Glassfish

Oracle

AS 10g

SOAP with

Attachments

Y Y Y Y Y N Y Y

DIME Y N N Y N N N Y

MTOM N Y Y Y Y Y Y Y

The .NET framework supports MTOM, DIME and “SOAP with attachments”, at least from version

2.0 onwards.

PHP provides support only for “SOAP with attachments”, in the form of an extension provided by

the PEAR project.

http://wiki.apache.org/
http://wiki.apache.org/ws/StackComparison

15456/10 AL/mvk 63
ANNEX DG H 2B EN

Even though “SOAP with attachments” is widely adopted and used instead of using “Base-64”

encoding for attachments, its design is somewhat flawed, since the binary attachment is not part of

the SOAP message, making this approach similar in a lot of ways to just passing a URI for the

binary data and leaving it up to the message processor to do the retrieval task. This can present

difficulties both in terms of acknowledging that the binary attachment was properly received by the

web service endpoint as well as in using extensions such as “WS-Security”.

With that in mind, MTOM instead of “SOAP with attachments” is to be used for exchanging binary

attachments in ECRIS. More specifically, the ECRIS implementations – both the software produced

by Member States and the ECRIS Reference Implementation – will need to adhere completely to

the following standard:

§ SOAP Message Transmission Optimization Mechanism (W3C Recommendation 25
January 2005)

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

This version is the latest final version at the time of authoring this document.

Binary attachments exchange kinematics

Regardless of the technical standard followed, different approaches exist regarding the kinematics

that can be used for actually sending and receiving binary attachments.

One very common approach in exchanging binary attachments is the "Push" approach, where the

sender includes all attachments he wishes to send in one message. In the context of ECRIS, this

means that with each notification, request or response to a request, binary attachments can be

included right away along with the XML message (if available).

On the positive side, this means that the sender transmits in one go all data and is assured that it was

received as intended, binary files included. Another benefit of this approach is its simplicity, since it

does not require extra kinematics for information retrieval and verification of delivery.

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

15456/10 AL/mvk 64
ANNEX DG H 2B EN

On the negative side, using this approach means that each message is loaded with a large amount of

data that the receiver may not be interested in (since not all Member States are interested in sending

and/or receiving fingerprints). In addition to the concerns on the performance that this approach

implies, it also implies that all Member States implementations need to support the binary

attachment standard chosen and at least appropriately implement the receiving part of the "Push"

approach in order to preserve interoperability. Additionally, when a large number of messages are

exchanged special care needs to be taken so as not to overload the network and server resources of

the sending and receiving parties.

Another usual approach for exchanging binary attachments used mostly when high volumes of

binary data are to be exchanged or for interoperability reasons, is the "Pull" approach. With this

approach, the sender transmits to the receiver a pre-agreed list of references to the binary

attachments that he wishes to send instead of directly sending the binary files. In particular, this list

includes metadata of the binary attachments that allow the receiver to identify for example the

format, size, content and physical of the files. The receiver then, based on this list, uses an

additional service provided by the sender so as to actually download the binaries when and if he is

interested in receiving them.

This approach has exactly the opposite merits and flaws as compared to the "Push" approach. In

particular, since the binary exchange becomes an ad-hoc functionality triggered only on explicit

request, it must not necessarily be implemented, interoperability issues are reduced, development

time and costs can be reduced for some of the Member States and the impacts on performance are

limited. However, exactly for the same reason, the sender cannot be easily assured that the binary

attachments are appropriately received. In order then to avoid that flaw, additional kinematics needs

to be defined but increase the overall complexity of the solution.

In the context of ECRIS, several Member States are interested in systematically exchanging

fingerprints while other Member States are not allowed by their national laws to even receive

fingerprints electronically. Thus, a hybrid solution supporting both “Push” and “Pull” approaches is

to be used in ECRIS.

15456/10 AL/mvk 65
ANNEX DG H 2B EN

Implementing the “Push-Pull” Approach

In order to implement the "Pull" part of the approach, the following additional operations are

required in the service contract, used solely for the purpose of optionally retrieving the binary files

specified within the XML message that is transmitted by the sender:

§ An additional web service must allow a receiving Member State to request the NIST files
from the Member State that has sent the first message when fingerprints are available.

§ Another specific web service must then allow the initial Member State to push the NIST
file asynchronously to the receiving Member State that has specifically requested them
with the previous web service.

This also implies that appropriate XML elements are defined in the notification, request and

response messages for carrying information on the binary file attachments. Such elements need to

provide the following information for each binary file attached:

§ A unique ID, used for retrieving the file from the sender. This ID can also be used for
associating the attachment with other information XML elements if required.

§ The MIME type of the attached binary file.

§ The name of the binary file attached.

Optionally, the following elements can also be transmitted:

§ The title of the file

§ The file size in kilobytes

§ A comment

§ An MD5 hash of the file

Additional information can be added to this XML element if deemed necessary.

In addition to the web services and XML data elements, appropriate functional error codes must also

be foreseen in the ECRIS Detailed Technical Specifications so as to communicate errors that might

occur during this specific message exchange.

Concretely, if Member State “B” receives from Member State “A” a message indicating that binary

attachments are available, “B” may at any point in time after receiving the message issue a new web

service call for requesting one of the binary attachments that was indicated in the original message.

“A” can then process the request asynchronously and “push” the binary file as a response to this

request. The following UML sequence diagram further illustrates this message exchange:

15456/10 AL/mvk 66
ANNEX DG H 2B EN

Member State A

ECRIS Endpoint
Member State B

ECRIS Endpoint

deliverNotification(message:Notification)

deliverReceipt(message:Receipt)

requestBinaryAttachment(message:AttachmentInfo)

deliverBinaryAttachment(message:BinaryAttachment)

deliverReceipt(message:Receipt)

Figure 6 – A successful binary attachment exchange between two Member States

In order to implement the "Push" part of the approach, for each operation defined in the service

contract and that could potentially carry also binary attachments, such as "deliverNotification",

"deliverRequest" or “deliverResponse”, a duplicate operation is defined suffixed with "Push" (i.e.

"deliverNotificationPush", "deliverRequestPush", “deliverResponsePush” operations are added).

The normal operation assumes that the “Pull” approach is used and implements it. The duplicate

operation, suffixed with “Push”, behaves in the same way as the original operation but additionally

supports receiving the binary attachments bundled together with the XML message.

By default, all software implementations use and implement the “Pull” approach. Implementations

of Member States that do not support the operations suffixed with "Push" must return a specific

“SOAP Fault” exception to be defined in the ECRIS Detailed Technical Specifications (for example

"FunctionNotImplementedFault"), so as to notify the service caller that this functionality is not

implemented.

15456/10 AL/mvk 67
ANNEX DG H 2B EN

As with the versioning implementation described earlier, no additional software components,

services or kinematics are added in the ECRIS technical specifications to support usage of this

approach. Indeed, the “Push-Pull” approach relies on the fact that the invoker of a web service

knows before issuing the call which operation and which endpoint he intends to use. This implies

that each Member State implementation implementing the “Push” part of the approach must store

locally an information indicating for each other Member State whether the “Push” operations are

supported or not (i.e. this information is defined in the WSDL declarations of each web services

implementation).

The immediate benefit of this approach is that each Member State can freely decide and implement

the most suitable approach. The ones not interested in actively participating in the binary

attachments exchange do not need to implement the "Push" approach whereas Member States that

are interested can opt for using this functionality when supported instead of using the "Pull"

approach. Additionally, the impacts on performance can be limited and controlled, since Member

States can chose to opt for the "Pull" approach if the volume of data to be exchanged is high (for

example when sending a lot of messages within a short timeframe).

Please note however that Member States wanting to implement and use binary attachment

exchanges using the "Push" approach will need to develop and deploy both “Push” and “Pull”

solutions, thus increasing the cost of their development.

15456/10 AL/mvk 68
ANNEX DG H 2B EN

Batch transmission of Messages

During the “Inception Phase” of the ECRIS Technical Specifications project, it appeared that several

Member States participating in the NJR pilot project are sending messages in batches and not in

real-time. This is particularly done for notifications since these are rarely sent right away

automatically when convictions are registered in the criminal records register. Indeed, new

convictions and changes are usually piled up, then a small buffer period is used in order to make

sure that the conviction information is no longer modified and then only the group of notifications is

sent at once to the other Member States (for example once per day in the evening).

Please note that the NJR technical specification has not been designed to handle batches of XML

messages, and each message is handled as a single autonomous unit. The obvious benefit of doing

so is that the implementation remains simple and straightforward to implement.

In the first version of the ECRIS technical specifications, in order to keep the implementation as

simple as possible and considering the short timeframe given until April 2012 for developing the

ECRIS software, no batch operations allowing to send within one call several XML messages are to

be defined in the ECRIS web services. Indeed, this would add supplementary work and complexity

for the implementation of ECRIS. Furthermore, and since technical validation is to be done

synchronously, if there is an error in one of the messages contained in the batch, then the whole

batch is discarded. Additionally, receiving at once a lot of notifications is also not desired by the

end users of ECRIS since they may not be able to treat a huge number of notifications at once.

However, in order to avoid problems in the processing of unexpected large numbers of messages,

recommendations on the maximum number of messages per timeframe and per type will be

provided in the ECRIS Detailed Technical Specifications, in order to establish a base of good

practice regarding the transmission of messages.

15456/10 AL/mvk 69
ANNEX DG H 2B EN

Annex I – Overview of Member States Answers

Would you consider using a centralised architecture for the ECRIS information exchanges?

− Yes: AT, IT, LT, RO, SE and UK

− No: DE, EE, ES, FR, FI, LU, PL and SK

− Mixed: CZ

− Unknown: BE, NL, PT and SI

In particular, most of the Member States replying negatively consider that it would go against the

ECRIS legal basis to use a centralised communication approach.

More specifically, the answers of the Member States in regards to the various questions concerning

centralisation of technical artefacts are the following:

§ Using a shared central host for referencing WSDL and XML files:

− Yes: AT, BE, FR, IT, LT, NL, PL, SE, SK, UK

− No: DE, EE, ES, LU

− Unknown: CZ, FI, PT, RO, SI

§ Using a shared central server for hosting common and/or national reference tables:

− Yes: AT, BE, IT, LT, NL, PL, SE, UK

− No: DE, EE, ES, LU, RO, SK

− Mixed (yes for common, no for national tables): FR

− Unknown: CZ, FI, PT, SI

§ Using a central workflow system for handling transactional behaviour:

− Yes: IT, LT, UK

− No: AT, DE, EE, ES, FR, LU, NL, PL, SK

− Unknown: BE, CZ, FI, PT, SE, SI, RO

§ Using a central orchestration system of web services handling the kinematics of the data
exchanges:

− Yes: IT, LT, UK

− No: AT, BE, DE, EE, ES, FR, LU, NL, PL, SK

− Unknown: CZ, FI, PT, SE, SI, RO

§ Using a central sequence number generator for establishing technical identifiers of
messages:

− Yes: IT, LT, UK

− No: AT, BE, DE, EE, ES, FR, LU, NL, PL, SK

− Unknown: CZ, FI, PT, SE, SI, RO

15456/10 AL/mvk 70
ANNEX DG H 2B EN

§ Using a central server that would monitor the activities of the ECRIS servers in each
Member State and indicate server health:

− Yes: FR, IT, LT, UK

− No: AT, BE, DE, EE, ES, LU, NL, PL, SK

− Unknown: CZ, FI, PT, SE, SI, RO

The following table indicates the support of development platforms of the Member States for web

services extensions:

 A

T

B

E

C

Z

D

E

E

E

E

S

F

I

F

R

L

T

L

U

L

V

N

L

P

L

P

T

R

O

S

E

S

I

S

K

U

K

WS-Addressing N ? Y N Y Y N ? ? N ? ? Y ? N Y ? Y Y

WS-Discovery N ? Y N Y N N N ? N ? ? N ? N Y ? ? Y

WS-Security N ? Y N Y Y N N Y N ? ? Y ? N Y ? Y Y

WS-

SecureConversation

N ? Y N Y Y N N ? N ? ? Y ? N Y ? Y Y

WS-Policy N ? Y N Y N N N ? N ? ? Y ? N Y ? Y Y

15456/10 AL/mvk 71
ANNEX DG H 2B EN

ANNEX II – DISCARDED PROPOSALS

The following sections describe various technical proposals that have been discarded as a result of

the feedback provided by the Member States experts through the written comments and during the

Expert Sub Group meeting on 22 September 2010.

For each proposal, the original description is provided as well as the main reasoning that led to

deem the proposal inappropriate.

Communication Architecture

Proposal: Peer Services for Monitoring Connectivity

Connectivity issues have been identified as being quite tricky to handle in the NJR pilot project.

Given that ECRIS and NJR are software applications, the capability to react regarding connectivity

problems is minimal since they cannot intervene on the OSI Layer 3 problems. Furthermore, both

systems use the same decentralised architecture, using multiple different networks through which

the messages are channelled.

This chapter elaborates on the idea to provide automated tools allowing to monitor the connectivity.

Based on the proposals made for the future NJR specifications v1.5, it is proposed to define a

variant of the "deliverPing" service of NJR that would provide additional information facilitating

troubleshooting. The additional information to be provided as part of the reply of the “deliverPing”

function would be:

1. Status of peer (alive and working)

This information is also proposed in the “deliverPing” message of NJR, in the form of

an integer value.

15456/10 AL/mvk 72
ANNEX DG H 2B EN

2. Uptime

The “uptime” can help identifying the cause of unavailability of service and is useful

for troubleshooting connectivity issues and also collecting statistics on these causes.

Let us assume for example that a Member State’s system which previously had a

working connection with another Member State’s system transmits a message but that

the operation is not successful because the target host is unreachable. After some time,

a new attempt for transmitting the message is performed by the sender and now the

outcome is positive. In such a case, the sending Member State can query the proposed

service and check the host's uptime period. If the host was up and running during the

time the first unsuccessful request was made, the sending Member State can already

identify that the problem was related to network issues and not to problems with the

target host.

3. Connectivity status with other known peers

This information can also help identifying the cause of unavailability of service and is

useful for troubleshooting connectivity issues. Indeed it can provide the requestor with

insight as to whether other hosts are not available to the target system due to overall

connectivity issues (for example sTESTA connection being down) or because of

configuration issues.

4. Administrative messages (such as planned downtimes)

This information element can provide a standardised mean for communicating

foreseeable losses of service due to a planned downtime or possible performance

degradation due to maintenance activities.

Reason for discarding

The functions provided in this proposal are not considered essential for starting the operation of

ECRIS in April 2012. Indeed, the first version of the ECRIS technical specifications is to be kept as

simple as possible due to the short timeframe available for implementing ECRIS until April 2012.

Organisational measures for ensuring efficient communication between all Member States, such as

a central body that can for example notify all partners of planned downtimes or maintenance

activities, are the preferred option for the first version of ECRIS.

However the idea to implement more elaborate automated monitoring mechanisms using peer

services can be reconsidered in later versions of ECRIS.

15456/10 AL/mvk 73
ANNEX DG H 2B EN

WSDL/XSD/XML Design Principles

Proposal: XML Document as Autonomous Information Chunks

The general approach in achieving autonomy in information chunks is to include all relevant

information of a given element in an XML document as soon as this element is part of that

document.

As a concrete example, let's assume that a list of buildings needs to be sent to a technical

maintenance unit. A common XML schema has been agreed upon which defines the necessary data

types, validation rules and predefined lists of possible values to be used. Let's assume further that

the building definition named "BuildingType" has a property "BuildingCity" of type "CityType"

and a property "BuildingProvince" of type "ProvinceType". For “CityType” and “ProvinceType”, a

common list of possible values has also been defined as an enumeration in the XML schema.

In view of making the XML document autonomous, it should not contain only references to the

specific values in the enumerations for “CityType” and “ProvinceType” but, for each building, it

should contain the actual complete information set:

Example 29 – Autonomous XML documents

15456/10 AL/mvk 74
ANNEX DG H 2B EN

This enables any consumer of this XML document, and not only the software system of the intended

consumer, to easily read and understand the information, also without knowing or have direct

access to the common information sets and definitions. Additionally, even if the enumerations of

possible values change in time with the addition or removal of cities or provinces, the XML

document still remains valid and no information migration or transformation is required.

In the example above, it becomes obvious that including all values in the XML document leads to

information duplication and thus redundancy. It is possible to simplify this by adding internal

references to the common elements and values within the XML document.

Expanding the previous example, let’s add properties "BuildingCityReferrence" of type

"CityReferrence" and "BuildingProviceReferrence" of type "ProvinceReferrenceType" to the

“BuildingType” element. Please note that these new properties extend the “xs:IDREF” base type of

the W3C XML Schema specification which is used so as to reference identifiers defined by the

“xs:ID” base type of W3C XML Schema. These can then be used for linking information within the

XML document as follows:

<Buildings>

<Building id="12345">

<BuildingCityReference>123</BuildingCityReference>
<BuildingProvinceReference >123</BuildingProvinceReference >

</Building>

<Building id="56789">

<BuildingCityReference>123</BuildingCityReference>

<BuildingProvince>

<ProvinceName>Peiraus</ProvinceName>

<!-- Other elements of province structure ommited for brevity -->

</BuildingProvince>
</Building>

<ReferredCities>

<City id="123">

<CityName>Athens</CityName>

<!-- Other elements of city structure ommited for brevity -->

</City>

</ReferredCities>
<ReferredProvinces >

<Province id="123">

<ProvinceName>Attica</ProvinceName>

<!-- Other elements of province structure ommited for brevity -->

</Province>

</ReferredProvinces >

</Buildings>

Example 30 – Autonomous XML documents with internal reference elements

Please note that in this example above both manners of including the values directly in the element

and linking to a reference are supported simultaneously within the same XML document. It is

proposed to allow this in ECRIS.

Reason for discarding

15456/10 AL/mvk 75
ANNEX DG H 2B EN

The ECRIS technical specifications intend to set a common protocol of interexchange of

information between Member States’ computerised systems. In particular, the XML messages are to

be processed by the ECRIS applications and not to be read and manipulated by human operators. To

that end, including all reference values in a message is considered inappropriate as it will lead to

additional functional checks and create redundancy of information. In particular, it also adds

complexity in the case where the reference information duplicated in the XML message does not

match the reference information that was defined in the common reference tables.

Given the aforementioned arguments, this proposal is considered inappropriate and has been

discarded.

Versioning

Proposal: Schema versioning – keeping constant XML namespace values and using the “version” attribute

The XML Schema specification allows an optional “version” attribute on the schema declaration.

The advantage of this approach is that it is easy to implement and is fully supported by the XML

schema standard. The impact upon XML instances is fairly minimal since the namespace remains

unchanged. There are two disadvantages with this approach:

§ XML schema validation tools are not required to validate instances using the “version”
attribute — the attribute is provided purely for documentation purposes and is not
enforceable by XML parsers.

§ Since XML parsers are not required to validate using the “version” attribute, additional
custom processing (i.e. in addition to parsing and validation) is required to ensure that the
expected schema version(s) are being referenced by the XML instance.

As an example, the following XSD uses the version attribute to define the version of the schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001 /XMLSchema " targetNamespace="http:/ /

ec.europa .eu/ECRIS/common/" version="1.0">

.

.

.

</xs:schema>

Example 31 – Usage of “version” attribute

Reason for discarding

15456/10 AL/mvk 76
ANNEX DG H 2B EN

The proposed usage of the “version” attribute is only relevant in the case where a third level of

versions, in particular minor compatible versions, is to be supported. Given the fact that the concept

of minor compatible versions cannot be considered for ECRIS, the usage of the “version” attribute

is no longer necessary.

Proposal: Design for extensibility using <xs:any>

The XML Schema standard introduces “<xs:any>” as a wildcarding element for enabling future

extensions to schemas in a well-defined manner. “<xsd:any>” includes a “namespace” attribute that

either constrains or extends the range of elements that might appear within the wildcard. The

“namespace” attribute can be set to any of the following:

§ “##any” enables the use of elements from any namespace to extend the schema

§ “##targetnamespace” restricts wildcards to the elements that appear within a
“targetNamespace”

§ “##other” makes it impossible to extend the schema using elements from the
“targetNamespace”

The “processContents” attribute dictates how schema extensions should be validated by an XML

parser:

§ “strict” requires the parser to validate all schema extensions

§ “skip” turns off validation for schema extensions

§ “lax” validates elements from supported namespaces and ignores unknown or unexpected
elements (most Web services specifications use lax)

The example below illustrates the use of “<xsd:any>” to enable an extensible definition of a type

"name":

<xs:complexType name="name ">

<xs:sequence>

<xs:element name="first" type="xs:string"/>

<xs:element name="last" type="xs:string"/>

<xs:any namespace="##any"

processContents ="lax"

minOccurs="0"

maxOccurs="unbounded "/>

</xs:sequence>

</xs:complexType>

Example 32 – Usage of <xs:any>

15456/10 AL/mvk 77
ANNEX DG H 2B EN

The example above would enable the XML instance to add additional constructs after the last name

(for example Mr. John Doe, John Doe Senior, etc.) while remaining valid based on the schema

definition.

Reason for discarding

The proposed design principle is mainly used to accommodate forward compatibility, which is not

part of the versioning strategy that has been defined in the “ECRIS Technical Architecture”.

Furthermore, it appears that some XML parsers have difficulties for properly parsing and validating

XML documents based on schemas which use the <xs:any> tag.

Given all the above, this proposal is considered inappropriate and has been discarded.

Binary Attachments

Proposal I: Image Files Only

It is proposed to limit the transmission of fingerprints to WSQ files containing the binary image

files of the ten-prints, without additional metadata.

These should be grey-scale images of a resolution of 500 dpi, encoded and compressed with the

“Wavelet Scalar Quantization” algorithm (WSQ).

In this proposal, the attachments are expected to be in the form of any number of *.WSQ files. The

total size of all attachments must not exceed 5 Megabytes.

Reason for discarding

The NIST file format has been retained for the “ECRIS Technical Architecture”, which is a format

that in addition to the image files allows carrying meta-data.

Proposal II: Fingerprints + PDF Files

As an extension to proposal I, it is proposed to allow also PDF files in view of exchanging scanned

documents such as:

§ Identification tokens, more specifically scans of ID cards, passports, driver's licenses,
social security cards, etc.

§ Court Decisions and amendments to them

Overall, regardless of the amount of binary attachments to be included per ECRIS message or the

implementation particulars, the maximum size of the sum of all attachments that can be sent in one

message must not exceed 6 Megabytes.

15456/10 AL/mvk 78
ANNEX DG H 2B EN

Reason for discarding

Allowing support for binary files other than NIST files potentially increases the security risks which

would require additional mitigation measures to be implemented. In addition, since the content of

PDF files cannot easily be limited or automatically verified, the support of such files would

potentially also raise data protection issues.

Proposal III: Fingerprints, PDF files, Image Files, Compressed Files and MS Office Files

As an extension to the proposal II above, it is proposed that the following additional file types can

be added as binary attachments:

§ Image file types : JPG, BMP, PNG, GIF

§ Microsoft Office files : DOC, DOCX, XLS, XLSX

§ Compressed files: ZIP, RAR, GZIP, 7Z, BZIP2, TAR

The maximum size of the sum of all attachments that can be sent in one message must not exceed 6

Megabytes.

Image files can replace or be used as an alternative for the scanned documents mentioned earlier.

To that end, the functional requirements that were defined in proposal I for scanned documents

remain the same. Additionally, there are no limitations or preferences imposed as to the choice of

format, analysis of the image and similar parameters as long as the total maximum file size of the

message is not violated.

Microsoft office files can replace or be used as an alternative specifically for judicial decisions and

amendments. When used in this fashion, the same functional requirements as in proposal I are still

applied. Also, office files can be used to exchange other types of information, in which case the

sender is responsible both for the validity and integrity of the information. Also, the sender is

responsible to adhere to all rules and regulations regarding information. No further limitations are

applied as to the functionality that can be included in these Microsoft Office documents, as long as

the total maximum file size of the message is not violated.

Compressed files can be used in order to exchange group of files that fall under the two previous

categories mentioned or for any other reason. All functional requirements and limitations already

defined for the above categories apply to these files as well. Furthermore, there are no limitations or

preferences imposed as to the choice of format, compression ratio and similar parameters as long as

the total maximum file size of the message is not violated.

15456/10 AL/mvk 79
ANNEX DG H 2B EN

Reason for discarding

This proposal is discarded for the same reasons as Proposal II: Fingerprints + PDF files.

Proposal IV: No Limitations

As an extension to proposal III, it is proposed to not limit in any way the file formats that can be

transmitted as attachments to the XML messages.

Thus any binary file can be used as a binary attachment as long as the maximum size of the sum of

all attachments does not exceed 6 Megabytes.

Reason for discarding

This proposal is discarded for the same reasons as Proposal II: Fingerprints + PDF files.

Binary Attachments Exchange Kinematics

Proposal I: Alternative “Pull” Approach

This proposal is actually a variation of proposal II presenting the “pull” approach. It differs in the

sense that, instead of using an additional web service for retrieving the binary attachments, the

sender provides an external facility (such as an FTP server, secured e-mail, etc.) from which the

binary attachments can be retrieved by the receiver. In that approach, additional XML elements need

to be added to the XML messages for indicating to the receiver where and how the attachment can

be retrieved.

This approach carries all the benefits of the approach discussed in proposal II and additionally it

removes the need to use a technical standard that can support binary exchanges through web

services. On the other hand, this approach definitely increases the administrative cost for all the

Member States that wish to provide fingerprints (i.e. additional technical facilities are required for

keeping the binary attachments, security concerns, maintenance) and the complexity of the

kinematics will also increase so as to ensure a successful exchange of the information.

Reason for discarding

The hybrid “Push-Pull” approach has been retained as a result of the positive feedback generally

received from the Member States experts.

This proposal is thus no longer necessary.

15456/10 AL/mvk 80
ANNEX DG H 2B EN

Batch Processing of Message Exchanges

Proposal: Batch Processing of Message Exchanges

The proposal is to introduce batching capabilities for the exchanges of the XML messages in order

to reduce the cost in machine resources that is required to currently handle the complete

transmission of information between Member States.

The benefit provided by that approach becomes obvious using a similar example. Indeed,

serialisation to and from XML is only performed once when many XML messages are sent at once.

Also the establishing of the secured communication channel is only performed once.

To succeed in using batches for transmission, the following elements have to be taken under

consideration and solved

§ Message correlation: The term correlation refers to the logical connection between the
two messages. It must be possible to relate a response or an error message to exactly one
of the XML messages sent in the batch.

§ Validation of the XML document message payload against the XML schema(s) that define
its structure before sending the batch.

Message correlation is easily achieved by adding a unique identifier to all top elements in a given

batch. For example, if a sender is posting a batch of notifications, each notification needs to have a

unique identifier (which is already the case in the NJR specification).

Format validation is a good practice that must be performed regardless of the use of batches, since

before transmitting a message the sender should at least be positive that the message will not be

rejected due to XML validity errors.

Please note that using batches is considered here as an additional feature to using the single message

transmissions. Both functions need to be available in the ECRIS service contract.

Please note also that if the "push" approach is chosen for sending binary file attachments, then the

batch sending of XML messages is also not recommended due to concerns in the volume of data to

be exchanged (or the number of XML messages in the batch needs to be strictly limited in order to

control the volume but this again reduces the interest in the batch sending approach).

Finally, implementing a web service that performs sending or receiving of batch messages is fairly

straightforward and simple. Indeed, the processing code that performs the sending or receiving of a

single XML message can be completely reused and put in a loop for realising the batch sending or

receiving. Thus it does not increase dramatically the complexity of the solution or the development

and testing costs.

15456/10 AL/mvk 81
ANNEX DG H 2B EN

Example of a batch of notifications

Let us assume that a kinematic has been established in which a sender can include multiple

notifications in one transmission and the receiver must reply either with a "ReceiptMessage" for

acknowledging that the notification is processed successfully or with a "BusinessErrorMessage" in

case of business validation errors.

Let’s also assume that a sender wishes to transmit 20 notifications in one transmission to a receiver.

The XML message payload created by the sender would look like the following:

<Notifications id="23143123123">

<Notification id="123321">

.

.

</Notification>

<Notification id="321123">

.

.

</Notification>

.

.

</Notifications>
Example 33 – XML message containing 20 notifications

Based on the kinematics briefly outlined above, the receiver would first need to send a receipt,

notifying the sender that the batch message has been received successfully. The receipt would look

like the following:

<ReceiptMessage>

<InReplyTo>23143123123</InReplyTo>

.

.

</ReceiptMessage>
Example 34 – Receipt reply to batch message

Let us assume now that the specific notification with id "123321" could not be processed due to a

business error, whereas notification with id "321123" was processed successfully. The payload of

the message for the first notification would look like the following:

<BusinessErrorMessage>

<InReplyTo>23143123123</InReplyTo>

<RelatedTo>123321</RelatedTo>

.

.

</BusinessErrorMessage>
Example 35 – Business error reply to batch message

15456/10 AL/mvk 82
ANNEX DG H 2B EN

The message for the second notification would look like the following:

<BusinessSuccessMessage>

<InReplyTo>23143123123</InReplyTo>

<RelatedTo>123321</RelatedTo>

.

.

</BusinessSuccessMessage>
Example 36 – Business success reply to batch message

Of course, the same batching approach could be used to deliver also these receipt and error

messages, following the same paradigm that was used for notifications.

Reason for discarding

In the first version of the ECRIS technical specifications, in order to keep the implementation as

simple as possible and considering the short timeframe given until April 2012 for developing the

ECRIS software, no batch operations allowing to send within one call several XML messages are to

be defined in the ECRIS web services. Indeed, this would add supplementary work and complexity

for the implementation of ECRIS. Furthermore, and since technical validation is to be done

synchronously, if there is an error in one of the messages contained in the batch, then the whole

batch is discarded. Additionally, receiving at once a lot of notifications is also not desired by the

end users of ECRIS since they may not be able to treat a huge number of notifications at once.
